IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3501-d573994.html
   My bibliography  Save this article

Bin Weather Data for HVAC Systems Energy Calculations

Author

Listed:
  • Konstantinos T. Papakostas

    (Department of Mechanical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, EL 54124 Thessaloniki, Greece)

  • Dimitrios Kyrou

    (Department of Mechanical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, EL 54124 Thessaloniki, Greece)

  • Kyrillos Kourous

    (Department of Mechanical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, EL 54124 Thessaloniki, Greece)

  • Dimitra Founda

    (Institute for Environmental Research & Sustainable Development, National Observatory of Athens, EL 15236 Athens, Greece)

  • Georgios Martinopoulos

    (School of Science and Technology, International Hellenic University, EL 57001 Thessaloniki, Greece)

Abstract

The increase in global air temperature is well documented, as during the last several years each decade has been consecutively warmer than the preceding. As climatic conditions affect the energy performance of buildings, the changes in outdoor air temperature and humidity will inevitably lead to significant alterations in energy consumption and costs for the heating, ventilating and air conditioning (HVAC) of buildings. The availability and quality of climatic data play an important role in the accuracy of energy analysis results. In this study, the hourly temperature and relative humidity of outdoor air measurements, for a period of three decades (1983–2012), recorded at the climatic station of the National Observatory of Athens were processed, and an up-to-date set of specific data for the application of bin methods was produced and presented. The data were then used to calculate changes in the energy demands in a typical office building throughout the specified period. Results showed a progressive reduction in the low and increase in the high temperature intervals, leading to an increase in the building’s annual energy requirements for air conditioning of up to 14.5% from the first to the third decade, with decrease in the energy demands for heating and increase in the energy demands for cooling.

Suggested Citation

  • Konstantinos T. Papakostas & Dimitrios Kyrou & Kyrillos Kourous & Dimitra Founda & Georgios Martinopoulos, 2021. "Bin Weather Data for HVAC Systems Energy Calculations," Energies, MDPI, vol. 14(12), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3501-:d:573994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papakostas, K. & Bentoulis, A. & Bakas, V. & Kyriakis, N., 2007. "Estimation of ambient temperature bin data from monthly average temperatures and solar clearness index. Validation of the methodology in two Greek cities," Renewable Energy, Elsevier, vol. 32(6), pages 991-1005.
    2. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    3. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    4. Georgios Martinopoulos & Anna Serasidou & Panagiota Antoniadou & Agis M. Papadopoulos, 2018. "Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings," Sustainability, MDPI, vol. 10(12), pages 1-24, December.
    5. Papakostas, K.T, 1999. "Technical note Bin weather data of Athens, Greece," Renewable Energy, Elsevier, vol. 17(2), pages 265-275.
    6. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    7. Papakostas, K. & Tsilingiridis, G. & Kyriakis, N., 2008. "Bin weather data for 38 Greek cities," Applied Energy, Elsevier, vol. 85(10), pages 1015-1025, October.
    8. Özyurt, Ömer & Bakirci, Kadir & Erdoğan, Sadık & Yilmaz, Mehmet, 2009. "Bin weather data for the provinces of the Eastern Anatolia in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1319-1332.
    9. Papakostas, K. & Mavromatis, T. & Kyriakis, N., 2010. "Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece," Renewable Energy, Elsevier, vol. 35(7), pages 1376-1379.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Xia & Weien Xie & Jialiang Guo & Yukai Zou & Zhuotong Wu & Yini Fan, 2023. "Building Thermal and Energy Performance of Subtropical Terraced Houses under Future Climate Uncertainty," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    2. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    3. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    4. Rodrigues, Eugénio & Fernandes, Marco S., 2020. "Overheating risk in Mediterranean residential buildings: Comparison of current and future climate scenarios," Applied Energy, Elsevier, vol. 259(C).
    5. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    6. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    7. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    9. Ana Mafalda Matos & João M. P. Q. Delgado & Ana Sofia Guimarães, 2022. "Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview," Energies, MDPI, vol. 15(7), pages 1-20, April.
    10. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    11. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    12. D'Amico, A. & Ciulla, G. & Panno, D. & Ferrari, S., 2019. "Building energy demand assessment through heating degree days: The importance of a climatic dataset," Applied Energy, Elsevier, vol. 242(C), pages 1285-1306.
    13. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    14. Marcin Klimczak & Grzegorz Bartnicki & Piotr Ziembicki, 2022. "Energy Consumption by DHW System with a Circulation Loop as an Energy Efficiency Component, Based on an Example of a Residential Building," Energies, MDPI, vol. 15(11), pages 1-18, May.
    15. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    16. Thobile Zikhathile & Harrison Atagana & Joseph Bwapwa & David Sawtell, 2022. "A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    17. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    18. Shaik, Saleem, 2024. "Contribution of climate change to sector-source energy demand," Energy, Elsevier, vol. 294(C).
    19. Pinto, Giuseppe & Piscitelli, Marco Savino & Vázquez-Canteli, José Ramón & Nagy, Zoltán & Capozzoli, Alfonso, 2021. "Coordinated energy management for a cluster of buildings through deep reinforcement learning," Energy, Elsevier, vol. 229(C).
    20. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3501-:d:573994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.