IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3401-d571716.html
   My bibliography  Save this article

Stamp-Charged Coke-Making Technology—The Effect of Charge Density and the Addition of Semi-Soft Coals on the Structural, Textural and Quality Parameters of Coke

Author

Listed:
  • Michał Rejdak

    (Department of Cokemaking Technologies, Institute for Chemical Processing of Coal, 1 Zamkowa Street, 41-803 Zabrze, Poland)

  • Andrzej Strugała

    (Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland)

  • Aleksander Sobolewski

    (Department of Cokemaking Technologies, Institute for Chemical Processing of Coal, 1 Zamkowa Street, 41-803 Zabrze, Poland)

Abstract

Coke is an integral component of the blast furnace charge; therefore, it plays an important role in the integrated steelmaking process. Achieving the required coke quality parameters by producers requires the use of a high proportion of the highest quality coking coals (hard coking coals) in the coking blends, which significantly increases the unit production costs. Approximately 75% of these costs are constituted by the cost of the coal blend’s preparation. There is a deficit in the best quality coking coals on the world market and their supply are characterized by large fluctuations in quality parameters. Therefore, from the point of view of the economics of coke production, it is advantageous to produce high-quality coke from a coke blend with the highest possible content of cheaper coals. The paper presents the results of the influence of coal charge bulk density and semi-soft coking coal content in the coking blend on the textural and structural parameters of coke, which determine its quality. Research has shown that the application of increased density influences the parameters of the texture and structure of the coke, which shape its quality parameters. The use of stamp-charging technology contributes to the improvement of the coke quality or enables the production of coke of a predetermined quality from blends containing cheaper semi-soft coals.

Suggested Citation

  • Michał Rejdak & Andrzej Strugała & Aleksander Sobolewski, 2021. "Stamp-Charged Coke-Making Technology—The Effect of Charge Density and the Addition of Semi-Soft Coals on the Structural, Textural and Quality Parameters of Coke," Energies, MDPI, vol. 14(12), pages 1-31, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3401-:d:571716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marek Sciazko & Bartosz Mertas & Ludwik Kosyrczyk & Aleksander Sobolewski, 2020. "A Predictive Model for Coal Coking Based on Product Yield and Energy Balance," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Ludwik Kosyrczyk & Slawomir Stelmach & Krzysztof Gaska & Agnieszka Generowicz & Natalia Iwaszczuk & Dariusz Kardaś, 2021. "Optimization of Thermal Parameters of the Coke Oven Battery by Modified Methodology of Temperature Measurement in Heating Flues as the Management Tool in the Cokemaking Industry," Energies, MDPI, vol. 14(4), pages 1-13, February.
    3. Michał Rejdak & Rafał Bigda & Małgorzata Wojtaszek, 2020. "Use of Alternative Raw Materials in Coke-Making: New Insights in the Use of Lignites for Blast Furnace Coke Production," Energies, MDPI, vol. 13(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Rejdak & Grzegorz Gałko & Marcin Sajdak & Aleksandra Wieczorek, 2022. "Stamp-Charged Coke-Making Technology—An Empirical Model for Prediction of Coal Charge Density for Stamp Charging Coke Oven Batteries," Energies, MDPI, vol. 15(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ludwik Kosyrczyk & Slawomir Stelmach & Krzysztof Gaska & Agnieszka Generowicz & Natalia Iwaszczuk & Dariusz Kardaś, 2021. "Optimization of Thermal Parameters of the Coke Oven Battery by Modified Methodology of Temperature Measurement in Heating Flues as the Management Tool in the Cokemaking Industry," Energies, MDPI, vol. 14(4), pages 1-13, February.
    2. Jolanta Telenga-Kopyczyńska & Izabela Jonek-Kowalska, 2021. "Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions," Energies, MDPI, vol. 14(9), pages 1-24, May.
    3. Andrzej Mianowski & Bartosz Mertas & Marek Ściążko, 2021. "The Concept of Optimal Compaction of the Charge in the Gravitation System Using the Grains Triangle for Cokemaking Process," Energies, MDPI, vol. 14(13), pages 1-23, June.
    4. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    5. Lina Kieush & Andrii Koveria & Johannes Schenk & Kanay Rysbekov & Vasyl Lozynskyi & Heng Zheng & Azamat Matayev, 2022. "Investigation into the Effect of Multi-Component Coal Blends on Properties of Metallurgical Coke via Petrographic Analysis under Industrial Conditions," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    6. Marek Sciazko & Aleksander Sobolewski, 2021. "Special Issue [Energies] “Clean Utilization and Conversion Technology of Coal”," Energies, MDPI, vol. 14(15), pages 1-3, July.
    7. Marian Niesler & Janusz Stecko & Sławomir Stelmach & Anna Kwiecińska-Mydlak, 2021. "Biochars in Iron Ores Sintering Process: Effect on Sinter Quality and Emission," Energies, MDPI, vol. 14(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3401-:d:571716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.