IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3238-d567099.html
   My bibliography  Save this article

A Study on Wear and Friction of Passenger Vehicles Control Arm Ball Joints

Author

Listed:
  • Marek Wozniak

    (Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 90-537 Łódź, Poland)

  • Krzysztof Siczek

    (Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 90-537 Łódź, Poland)

  • Gustavo Ozuna

    (Department of Industrial Engineering and Systems, University of Sonora, Hermosillo 83000, Mexico)

  • Przemyslaw Kubiak

    (Institute of Vehicles and Construction Machinery Engineering, Warsaw University of Technology, 02-524 Warszawa, Poland)

Abstract

The following paper describes research on vehicle suspension elements: the ball joints. The worn surface roughness of selected ball pins and their bearings was compared in terms of vehicle mileage, utilization period, and car model. Ball pin roughness was measured using a scanning tunneling microscope (STM), whereas for the bearing surface, a profilometer was used. The aim of this study was to determine the resistive torque in an unloaded ball joint. Using the finite element method, models of the unloaded ball joint were analyzed in two scenarios: with and without interference between the worn ball and its bearing. Calculated values of resistive torques in the ball joint were compared, and recommendations were given relative to the mileage and the time after which it was necessary to perform verification or replacement of the ball joints.

Suggested Citation

  • Marek Wozniak & Krzysztof Siczek & Gustavo Ozuna & Przemyslaw Kubiak, 2021. "A Study on Wear and Friction of Passenger Vehicles Control Arm Ball Joints," Energies, MDPI, vol. 14(11), pages 1-29, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3238-:d:567099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3238/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jialing Yao & Meng Wang & Zhihong Li & Yunyi Jia, 2021. "Research on Model Predictive Control for Automobile Active Tilt Based on Active Suspension," Energies, MDPI, vol. 14(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Rodriguez-Guevara & Antonio Favela-Contreras & Francisco Beltran-Carbajal & Carlos Sotelo & David Sotelo, 2023. "A Differential Flatness-Based Model Predictive Control Strategy for a Nonlinear Quarter-Car Active Suspension System," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    2. Daniel Rodriguez-Guevara & Antonio Favela-Contreras & Francisco Beltran-Carbajal & David Sotelo & Carlos Sotelo, 2021. "Active Suspension Control Using an MPC-LQR-LPV Controller with Attraction Sets and Quadratic Stability Conditions," Mathematics, MDPI, vol. 9(20), pages 1-17, October.
    3. Jianxu Zhu & Dingxuan Zhao & Shuang Liu & Zilong Zhang & Guangyu Liu & Jinming Chang, 2022. "Integrated Control of Spray System and Active Suspension Systems Based on Model-Assisted Active Disturbance Rejection Control Algorithm," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    4. Habib Benbouhenni & Nicu Bizon, 2021. "Improved Rotor Flux and Torque Control Based on the Third-Order Sliding Mode Scheme Applied to the Asynchronous Generator for the Single-Rotor Wind Turbine," Mathematics, MDPI, vol. 9(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3238-:d:567099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.