IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3218-d566370.html
   My bibliography  Save this article

Technology Pathways and Economic Analysis for Transforming High Temperature to Low Temperature District Heating Systems

Author

Listed:
  • Pedro Durán

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Herena Torio

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Patrik Schönfeldt

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Peter Klement

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Benedikt Hanke

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Karsten von Maydell

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

  • Carsten Agert

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany)

Abstract

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.

Suggested Citation

  • Pedro Durán & Herena Torio & Patrik Schönfeldt & Peter Klement & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2021. "Technology Pathways and Economic Analysis for Transforming High Temperature to Low Temperature District Heating Systems," Energies, MDPI, vol. 14(11), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3218-:d:566370
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
    2. Friedrich Kunz & Mario Kendziorski & Wolf-Peter Schill & Jens Weibezahn & Jan Zepter & Christian von Hirschhausen & Philipp Hauser & Matthias Zech & Dominik Möst & Sina Heidari & Björn Felten & Christ, 2017. "Electricity, Heat and Gas Sector Data for Modelling the German System," Data Documentation 92, DIW Berlin, German Institute for Economic Research.
    3. Danhong Wang & Jan Carmeliet & Kristina Orehounig, 2021. "Design and Assessment of District Heating Systems with Solar Thermal Prosumers and Thermal Storage," Energies, MDPI, vol. 14(4), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    3. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    4. Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
    5. Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
    6. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    7. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    8. Jens Weibezahn & Mario Kendziorski, 2019. "Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language," Energies, MDPI, vol. 12(6), pages 1-21, March.
    9. Østergaard, Dorte Skaarup & Tunzi, Michele & Svendsen, Svend, 2021. "What does a well-functioning heating system look like? Investigation of ten Danish buildings that utilize district heating efficiently," Energy, Elsevier, vol. 227(C).
    10. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    11. Al-Shammari, Eiman Tamah & Keivani, Afram & Shamshirband, Shahaboddin & Mostafaeipour, Ali & Yee, Por Lip & Petković, Dalibor & Ch, Sudheer, 2016. "Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm," Energy, Elsevier, vol. 95(C), pages 266-273.
    12. Månsson, Sara & Johansson Kallioniemi, Per-Olof & Thern, Marcus & Van Oevelen, Tijs & Sernhed, Kerstin, 2019. "Faults in district heating customer installations and ways to approach them: Experiences from Swedish utilities," Energy, Elsevier, vol. 180(C), pages 163-174.
    13. Anna Vannahme & Mathias Ehrenwirth & Tobias Schrag, 2021. "Enhancement of a District Heating Substation as Part of a Low-Investment Optimization Strategy for District Heating Systems," Resources, MDPI, vol. 10(5), pages 1-17, May.
    14. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    15. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    16. Fu, Lin & Li, Yonghong & Wu, Yanting & Wang, Xiaoyin & Jiang, Yi, 2021. "Low carbon district heating in China in 2025- a district heating mode with low grade waste heat as heat source," Energy, Elsevier, vol. 230(C).
    17. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    18. Yang, Xiaochen & Li, Hongwei & Svendsen, Svend, 2016. "Evaluations of different domestic hot water preparing methods with ultra-low-temperature district heating," Energy, Elsevier, vol. 109(C), pages 248-259.
    19. Shamshirband, Shahaboddin & Petković, Dalibor & Enayatifar, Rasul & Hanan Abdullah, Abdul & Marković, Dušan & Lee, Malrey & Ahmad, Rodina, 2015. "Heat load prediction in district heating systems with adaptive neuro-fuzzy method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 760-767.
    20. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3218-:d:566370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.