IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3045-d561331.html
   My bibliography  Save this article

On the Evaluation of Interfacial Tension (IFT) of CO 2 –Paraffin System for Enhanced Oil Recovery Process: Comparison of Empirical Correlations, Soft Computing Approaches, and Parachor Model

Author

Listed:
  • Farzaneh Rezaei

    (Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran)

  • Amin Rezaei

    (Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran)

  • Saeed Jafari

    (Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran)

  • Abdolhossein Hemmati-Sarapardeh

    (Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran)

  • Amir H. Mohammadi

    (Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa)

  • Sohrab Zendehboudi

    (Faculty of Engineering and Applied Science, Memorial University, St. John’s, NL A1B 3X5, Canada)

Abstract

Carbon dioxide-based enhanced oil-recovery (CO 2 -EOR) processes have gained considerable interest among other EOR methods. In this paper, based on the molecular weight of paraffins (n-alkanes), pressure, and temperature, the magnitude of CO 2 –n-alkanes interfacial tension (IFT) was determined by utilizing soft computing and mathematical modeling approaches, namely: (i) radial basis function (RBF) neural network (optimized by genetic algorithm (GA), gravitational search algorithm (GSA), imperialist competitive algorithm (ICA), particle swarm optimization (PSO), and ant colony optimization (ACO)), (ii) multilayer perception (MLP) neural network (optimized by Levenberg-Marquardt (LM)), and (iii) group method of data handling (GMDH). To do so, a broad range of laboratory data consisting of 879 data points collected from the literature was employed to develop the models. The proposed RBF-ICA model, with an average absolute percent relative error (AAPRE) of 4.42%, led to the most reliable predictions. Furthermore, the Parachor approach with different scaling exponents (n) in combination with seven equations of state (EOSs) was applied for IFT predictions of the CO 2 –n-heptane and CO 2 –n-decane systems. It was found that n = 4 was the optimum value to obtain precise IFT estimations; and combinations of the Parachor model with three-parameter Peng–Robinson and Soave–Redlich–Kwong EOSs could better estimate the IFT of the CO 2 –n-alkane systems, compared to other used EOSs.

Suggested Citation

  • Farzaneh Rezaei & Amin Rezaei & Saeed Jafari & Abdolhossein Hemmati-Sarapardeh & Amir H. Mohammadi & Sohrab Zendehboudi, 2021. "On the Evaluation of Interfacial Tension (IFT) of CO 2 –Paraffin System for Enhanced Oil Recovery Process: Comparison of Empirical Correlations, Soft Computing Approaches, and Parachor Model," Energies, MDPI, vol. 14(11), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3045-:d:561331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3045/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3045/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hemmati-Sarapardeh, Abdolhossein & Varamesh, Amir & Husein, Maen M. & Karan, Kunal, 2018. "On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 313-329.
    2. Zendehboudi, Alireza & Tatar, Afshin & Li, Xianting, 2017. "A comparative study and prediction of the liquid desiccant dehumidifiers using intelligent models," Renewable Energy, Elsevier, vol. 114(PB), pages 1023-1035.
    3. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yancai Xiao & Ruolan Dai & Guangjian Zhang & Weijia Chen, 2017. "The Use of an Improved LSSVM and Joint Normalization on Temperature Prediction of Gearbox Output Shaft in DFWT," Energies, MDPI, vol. 10(11), pages 1-13, November.
    2. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    3. Cong Wang & Lisha Zhao & Shuhong Wu & Xinmin Song, 2020. "Predicting the Surveillance Data in a Low-Permeability Carbonate Reservoir with the Machine-Learning Tree Boosting Method and the Time-Segmented Feature Extraction," Energies, MDPI, vol. 13(23), pages 1-19, November.
    4. Theresa Liegl & Simon Schramm & Philipp Kuhn & Thomas Hamacher, 2023. "Considering Socio-Technical Parameters in Energy System Models—The Current Status and Next Steps," Energies, MDPI, vol. 16(20), pages 1-19, October.
    5. Nader Karballaeezadeh & Farah Zaremotekhases & Shahaboddin Shamshirband & Amir Mosavi & Narjes Nabipour & Peter Csiba & Annamária R. Várkonyi-Kóczy, 2020. "Intelligent Road Inspection with Advanced Machine Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance Systems," Energies, MDPI, vol. 13(7), pages 1-22, April.
    6. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Jun Zhou & Haitao Wang & Cong Xiao & Shicheng Zhang, 2022. "Hierarchical Surrogate-Assisted Evolutionary Algorithm for Integrated Multi-Objective Optimization of Well Placement and Hydraulic Fracture Parameters in Unconventional Shale Gas Reservoir," Energies, MDPI, vol. 16(1), pages 1-24, December.
    9. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    10. Vieira, Bruno & Nadaleti, Willian Cézar & Sarto, Ewerson, 2021. "The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: Energy matrix diversification," Renewable Energy, Elsevier, vol. 165(P1), pages 657-667.
    11. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    12. Mukun Yuan & Jian Liu & Zheyuan Chen & Qingda Guo & Mingzhe Yuan & Jian Li & Guangping Yu, 2024. "Predicting Energy Consumption for Hybrid Energy Systems toward Sustainable Manufacturing: A Physics-Informed Approach Using Pi-MMoE," Sustainability, MDPI, vol. 16(17), pages 1-27, August.
    13. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Giampieri, Alessandro & Ma, Zhiwei & Ling-Chin, Janie & Bao, Huashan & Smallbone, Andrew J. & Roskilly, Anthony Paul, 2022. "Liquid desiccant dehumidification and regeneration process: Advancing correlations for moisture and enthalpy effectiveness," Applied Energy, Elsevier, vol. 314(C).
    16. Jamei, Mehdi & Ahmadianfar, Iman, 2020. "A rigorous model for prediction of viscosity of oil-based hybrid nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    17. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
    18. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    19. Lin Chen & Yizhi Zhang & Karim Ragui & Chaofeng Hou & Jinguang Zang & Yanping Huang, 2023. "Molecular Dynamics Method for Supercritical CO 2 Heat Transfer: A Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    20. Danial Esmaeili Aliabadi & David Manske & Lena Seeger & Reinhold Lehneis & Daniela Thrän, 2023. "Integrating Knowledge Acquisition, Visualization, and Dissemination in Energy System Models: BENOPTex Study," Energies, MDPI, vol. 16(13), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3045-:d:561331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.