IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2885-d556158.html
   My bibliography  Save this article

Uncertainty Cost Functions in Climate-Dependent Controllable Loads in Commercial Environments

Author

Listed:
  • Daniel Losada

    (Electrical and Electronic Engineering, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia)

  • Ameena Al-Sumaiti

    (Advanced Power and Energy Center, Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates)

  • Sergio Rivera

    (Electrical and Electronic Engineering, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia)

Abstract

This article presents the development, simulation and validation of the uncertainty cost functions for a commercial building with climate-dependent controllable loads, located in Florida, USA. For its development, statistical data on the energy consumption of the building in 2016 were used, along with the deployment of kernel density estimator to characterize its probabilistic behavior. For validation of the uncertainty cost functions, the Monte-Carlo simulation method was used to make comparisons between the analytical results and the results obtained by the method. The cost functions found differential errors of less than 1%, compared to the Monte-Carlo simulation method. With this, there is an analytical approach to the uncertainty costs of the building that can be used in the development of optimal energy dispatches, as well as a complementary method for the probabilistic characterization of the stochastic behavior of agents in the electricity sector.

Suggested Citation

  • Daniel Losada & Ameena Al-Sumaiti & Sergio Rivera, 2021. "Uncertainty Cost Functions in Climate-Dependent Controllable Loads in Commercial Environments," Energies, MDPI, vol. 14(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2885-:d:556158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustavo E. Coria & Angel M. Sanchez & Ameena S. Al-Sumaiti & Guiseppe A. Rattá & Sergio R. Rivera & Andrés A. Romero, 2019. "A Framework for Determining a Prediction-Of-Use Tariff Aimed at Coordinating Aggregators of Plug-In Electric Vehicles," Energies, MDPI, vol. 12(23), pages 1-18, November.
    2. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    3. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    4. Montanari, R., 2003. "Criteria for the economic planning of a low power hydroelectric plant," Renewable Energy, Elsevier, vol. 28(13), pages 2129-2145.
    5. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    6. Cabus, Pieter, 2008. "River flow prediction through rainfall-runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium," Agricultural Water Management, Elsevier, vol. 95(7), pages 859-868, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    2. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    3. Ozhegov, Evgeniy & Popova, Evgeniya, 2017. "Demand for electricity and weather conditions: Nonparametric analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 55-73.
    4. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    5. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    6. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    7. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    8. Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
    9. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    10. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    11. Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
    12. Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand," Working Papers 1409, Department of Economics, University of Missouri.
    13. Blazquez Leticia & Nina Boogen & Massimo Filippini, 2012. "Residential electricity demand for Spain: new empirical evidence using aggregated data," CEPE Working paper series 12-82, CEPE Center for Energy Policy and Economics, ETH Zurich.
    14. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    15. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    16. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    17. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    18. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    19. Elkin D. Reyes & Arturo S. Bretas & Sergio Rivera, 2020. "Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles," Energies, MDPI, vol. 13(23), pages 1-20, December.
    20. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2885-:d:556158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.