IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2754-d552391.html
   My bibliography  Save this article

D-PMU and 5G-Network-Based Coordination Control Method for Three-Phase Imbalance Mitigation Units in the LVDN

Author

Listed:
  • Mengmeng Xiao

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Shaorong Wang

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zia Ullah

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Three-phase imbalance is a long-term issue existing in low-voltage distribution networks (LVDNs), which consequently has an inverse impact on the safe and optimal operation of LVDNs. Recently, the increasing integration of single-phase distributed generations (DGs) and flexible loads has increased the probability of imbalance occurrence in LVDNs. To overcome the above challenges, this paper proposes a novel methodology based on the concept of “Active Asymmetry Energy-Absorbing (AAEA)” utilizing loads with a back-to-back converter, denoted as “AAEA Unit” in this paper. AAEA Units are deployed and coordinated to actively absorb asymmetry power among three phases for imbalance mitigation in LVDNs based on the high-precision, high-accuracy, and real-time distribution-level phasor measurement unit (D-PMU) data acquisition system and the 5th generation mobile networks (5G) communication channels. Furthermore, the control scheme of the proposed method includes three control units. Specifically, the positive-sequence control unit is designed to maintain the voltage of the DC-capacitor of the back-to-back converter. Likewise, the negative-sequence and zero-sequence control units are expected to mitigate the imbalanced current components. A simple imbalanced LVDN is modeled and tested in Simulink/Matlab (MathWorks, US). The obtained results demonstrate the effectiveness of the proposed methodology.

Suggested Citation

  • Mengmeng Xiao & Shaorong Wang & Zia Ullah, 2021. "D-PMU and 5G-Network-Based Coordination Control Method for Three-Phase Imbalance Mitigation Units in the LVDN," Energies, MDPI, vol. 14(10), pages 1-12, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2754-:d:552391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Wu & Lin Zhou & Yihao Wan & Qiang Liu & Siyu Zhou, 2019. "A Mixed Uncertainty Power Flow Algorithm-Based Centralized Photovoltaic (PV) Cluster," Energies, MDPI, vol. 12(20), pages 1-16, October.
    2. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    3. Agalar, Sener & Kaplan, Yusuf Alper, 2018. "Power quality improvement using STS and DVR in wind energy system," Renewable Energy, Elsevier, vol. 118(C), pages 1031-1040.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuejun Zheng & Shaorong Wang & Xin Su & Mengmeng Xiao & Zia Ullah & Xin Hu & Chang Ye, 2021. "Real-Time Dynamic Behavior Evaluation of Active Distribution Networks Leveraging Low-Cost PMUs," Energies, MDPI, vol. 14(16), pages 1-20, August.
    2. Sebastian Baba & Serafin Bachman & Marek Jasinski & Hong Li, 2021. "Evaluation of Modular Power Converter Integrated with 5G Network," Energies, MDPI, vol. 14(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    2. Bin Ouyang & Lu Qu & Qiyang Liu & Baoye Tian & Zhichang Yuan & Peiqian Guo & Hongyi Dai & Weikun He, 2021. "Calculation and Analysis of the Interval Power Flow for Distributed Energy System Based on Affine Algorithm," Energies, MDPI, vol. 14(3), pages 1-14, January.
    3. Daisuke Iioka & Takahiro Fujii & Toshio Tanaka & Tsuyoshi Harimoto & Junpei Motoyama & Daisuke Nagae, 2021. "Improvement of Voltage Unbalance by Current Injection Based on Unbalanced Line Impedance in Distribution Network with PV System," Energies, MDPI, vol. 14(23), pages 1-16, December.
    4. Aya M. Moheb & Enas A. El-Hay & Attia A. El-Fergany, 2022. "Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids," Energies, MDPI, vol. 15(18), pages 1-30, September.
    5. Syahrul Nizam Md Saad & Adriaan Hendrik van der Weijde, 2019. "Evaluating the Potential of Hosting Capacity Enhancement Using Integrated Grid Planning modeling Methods," Energies, MDPI, vol. 12(19), pages 1-23, September.
    6. Emiyamrew Minaye Molla & Cheng-Chien Kuo, 2020. "Voltage Quality Enhancement of Grid-Integrated PV System Using Battery-Based Dynamic Voltage Restorer," Energies, MDPI, vol. 13(21), pages 1-16, November.
    7. Zbigniew Olczykowski, 2021. "Electric Arc Furnaces as a Cause of Current and Voltage Asymmetry," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2754-:d:552391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.