IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2294-d354317.html
   My bibliography  Save this article

Optimal Parameters of Volt–Var Function in Smart Inverters for Improving System Performance

Author

Listed:
  • Hyeong-Jin Lee

    (Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Korea)

  • Kwang-Hoon Yoon

    (Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Korea)

  • Joong-Woo Shin

    (Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Korea)

  • Jae-Chul Kim

    (Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Korea)

  • Sung-Min Cho

    (Korea Electric Power Research Institute (KEPRI), Korea Electric Power Company (KEPCO), 105, Munji-ro, Yuseong-gu, Daejeon 34056, Korea)

Abstract

This paper proposes a method to improve the performance of a distribution system by optimizing volt–var function of a smart inverter to alleviate the voltage deviation problem due to distributed generation connection. In order to minimize voltage deviation and line losses which represent the performance of a distribution system, this paper proposes an algorithm that optimally sets the parameters of the volt–var function. In the process of optimizing the parameters of the volt–var function, the algorithm proposed in this paper considers minimizing the contribution of the reactive power in order not to affect the output of the distributed generation. In order to apply to the field, the distribution system in South Korea considering the configuration and operation regulation was selected as a test model for algorithm verification. As a result, the system performance was successfully improved by optimally setting the volt–var function of the smart inverter which is an effective way to solve the over-voltage problem caused by distributed generation connection. This paper verified the proposed method through OpenDSS, a quasi-static time-series simulation, for the test model considering the characteristics of the distribution system in South Korea.

Suggested Citation

  • Hyeong-Jin Lee & Kwang-Hoon Yoon & Joong-Woo Shin & Jae-Chul Kim & Sung-Min Cho, 2020. "Optimal Parameters of Volt–Var Function in Smart Inverters for Improving System Performance," Energies, MDPI, vol. 13(9), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2294-:d:354317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2294/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaewan Suh & Sungchul Hwang & Gilsoo Jang, 2017. "Development of a Transmission and Distribution Integrated Monitoring and Analysis System for High Distributed Generation Penetration," Energies, MDPI, vol. 10(9), pages 1-15, August.
    2. Hana Kim & Hun Park, 2018. "PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    3. Sang-Yun Yun & Joon-Ho Choi, 2014. "Development and Field Test of a Real-Time Database in the Korean Smart Distribution Management System," Energies, MDPI, vol. 7(4), pages 1-24, March.
    4. Yun-Su Kim & Gyeong-Hun Kim & Jae-Duck Lee & Changhee Cho, 2016. "New Requirements of the Voltage/VAR Function for Smart Inverter in Distributed Generation Control," Energies, MDPI, vol. 9(11), pages 1-14, November.
    5. Sang-Yun Yun & Pyeong-Ik Hwang & Seung-Il Moon & Seong-Chul Kwon & Il-Keun Song & Joon-Ho Choi, 2014. "Development and Field Test of Voltage VAR Optimization in the Korean Smart Distribution Management System," Energies, MDPI, vol. 7(2), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Liu & Maryam Majidi & Haonan Wang & Denis Mende & Martin Braun, 2023. "Time Series Optimization-Based Characteristic Curve Calculation for Local Reactive Power Control Using Pandapower - PowerModels Interface," Energies, MDPI, vol. 16(11), pages 1-24, May.
    2. Ryuto Shigenobu & Akito Nakadomari & Ying-Yi Hong & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Optimization of Voltage Unbalance Compensation by Smart Inverter," Energies, MDPI, vol. 13(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    2. Yazhou Jiang & Chen-Ching Liu & Yin Xu, 2016. "Smart Distribution Systems," Energies, MDPI, vol. 9(4), pages 1-20, April.
    3. Dongwon Lee & Changhee Han & Gilsoo Jang, 2021. "Stochastic Analysis-Based Volt–Var Curve of Smart Inverters for Combined Voltage Regulation in Distribution Networks," Energies, MDPI, vol. 14(10), pages 1-15, May.
    4. Miro Antonijević & Stjepan Sučić & Hrvoje Keserica, 2018. "Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication," Energies, MDPI, vol. 11(3), pages 1-17, March.
    5. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    6. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    7. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    8. Su-Hee Lee & Yong-Chul Jang, 2023. "Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea," Energies, MDPI, vol. 16(24), pages 1-15, December.
    9. Kyounga Lee & Jongmun Cha, 2020. "Towards Improved Circular Economy and Resource Security in South Korea," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    10. Vishnu S Prabhu & Shraddha Shrivastava & Kakali Mukhopadhyay, 2022. "Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach," Circular Economy and Sustainability, Springer, vol. 2(2), pages 507-534, June.
    11. Ji Han & Shihong Miao & Jing Yu & Yifeng Dong & Junxian Hou & Simo Duan & Lixing Li, 2018. "Multi-Rate and Parallel Electromagnetic Transient Simulation Considering Nonlinear Characteristics of a Power System," Energies, MDPI, vol. 11(2), pages 1-15, February.
    12. Magdalena Bogacka & Martyna Potempa & Bartłomiej Milewicz & Dariusz Lewandowski & Krzysztof Pikoń & Katarzyna Klejnowska & Piotr Sobik & Edyta Misztal, 2020. "PV Waste Thermal Treatment According to the Circular Economy Concept," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    13. Preeti Nain & Arun Kumar, 2023. "Understanding manufacturers’ and consumers’ perspectives towards end-of-life solar photovoltaic waste management and recycling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2264-2284, March.
    14. Xiangyu Kong & Xiaoxiao Yuan & Yuting Wang & Yong Xu & Li Yu, 2019. "Research on Optimal D-PMU Placement Technology to Improve the Observability of Smart Distribution Networks," Energies, MDPI, vol. 12(22), pages 1-23, November.
    15. Wang, Chen & Feng, Kuishuang & Liu, Xi & Wang, Peng & Chen, Wei-Qiang & Li, Jiashuo, 2022. "Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment," Applied Energy, Elsevier, vol. 307(C).
    16. Toni Cantero Gubert & Alba Colet & Lluc Canals Casals & Cristina Corchero & José Luís Domínguez-García & Amelia Alvarez de Sotomayor & William Martin & Yves Stauffer & Pierre-Jean Alet, 2021. "Adaptive Volt-Var Control Algorithm to Grid Strength and PV Inverter Characteristics," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    17. Lucía Doyle & German Cavero & Mircea Modreanu, 2023. "Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    18. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.
    19. Omar H. AL-Zoubi & Moayyad Shawaqfah & Fares Almomani & Rebhi A. Damash & Kamel Al-Zboon, 2022. "Photovoltaic Solar Cells and Panels Waste in Jordan: Figures, Facts, and Concerns," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    20. SeokJu Kang & Jaewoo Kim & Jung-Wook Park & Seung-Mook Baek, 2019. "Reactive Power Management Based on Voltage Sensitivity Analysis of Distribution System with High Penetration of Renewable Energies," Energies, MDPI, vol. 12(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2294-:d:354317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.