IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5785-d1430464.html
   My bibliography  Save this article

Sustainable Strategies for Crystalline Solar Cell Recycling: A Review on Recycling Techniques, Companies, and Environmental Impact Analysis

Author

Listed:
  • Mina Akhter

    (Department of Electrical and Electronic Engineering, Green University of Bangladesh, Narayanganj 1461, Bangladesh)

  • Ahmed Al Mansur

    (Department of Electrical and Electronic Engineering, Green University of Bangladesh, Narayanganj 1461, Bangladesh)

  • Md. Imamul Islam

    (Department of Electrical and Electronic Engineering, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan 26600, Malaysia)

  • M. S. Hossain Lipu

    (Department of Electrical and Electronic Engineering, Green University of Bangladesh, Narayanganj 1461, Bangladesh)

  • Tahia F. Karim

    (Department of Electrical and Electronic Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh)

  • Maher G. M. Abdolrasol

    (Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Thamer A. H. Alghamdi

    (Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
    Electrical Engineering Department, Faculty of Engineering, Al-Baha University, Al-Baha 65779, Saudi Arabia)

Abstract

Solar PV is gaining increasing importance in the worldwide energy industry. Consequently, the global expansion of crystalline photovoltaic power plants has resulted in a rise in PV waste generation. However, disposing of PV waste is challenging and can pose harmful chemical effects on the environment. Therefore, developing technologies for recycling crystalline silicon solar modules is imperative to improve process efficiency, economics, recovery, and recycling rates. This review offers a comprehensive analysis of PV waste management, specifically focusing on crystalline solar cell recycling. The classification of PV recycling companies based on various components, including solar panels, PV glass, aluminum frames, silicon solar cells, junction boxes, plastic, back sheets, and cables, is explored. Additionally, the survey includes an in-depth literature review concentrating on chemical treatment for crystalline solar cell recycling. Furthermore, this study provides constructive suggestions for PV power plants on how to promote solar cell recycling at the end of their life cycles, thereby reducing their environmental impact. Moreover, the techno-economic and environmental dimensions of solar cell recycling techniques are investigated in detail. Overall, this review offers valuable insights into the challenges and opportunities associated with crystalline solar cell recycling, emphasizing the importance of economically feasible and environmentally sustainable PV waste management solutions in the constantly evolving solar energy market.

Suggested Citation

  • Mina Akhter & Ahmed Al Mansur & Md. Imamul Islam & M. S. Hossain Lipu & Tahia F. Karim & Maher G. M. Abdolrasol & Thamer A. H. Alghamdi, 2024. "Sustainable Strategies for Crystalline Solar Cell Recycling: A Review on Recycling Techniques, Companies, and Environmental Impact Analysis," Sustainability, MDPI, vol. 16(13), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5785-:d:1430464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hana Kim & Hun Park, 2018. "PV Waste Management at the Crossroads of Circular Economy and Energy Transition: The Case of South Korea," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    2. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    3. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Niekurzak & Wojciech Lewicki & Hasan Huseyin Coban & Agnieszka Brelik, 2023. "Conceptual Design of a Semi-Automatic Process Line for Recycling Photovoltaic Panels as a Way to Ecological Sustainable Production," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    2. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    3. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm & Hoang, Anh Tuan, 2021. "Implementation of phase change materials for thermal regulation of photovoltaic thermal systems: Comprehensive analysis of design approaches," Energy, Elsevier, vol. 228(C).
    4. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    5. Ahmed Al Mansur & Md. Ruhul Amin & Molla Shahadat Hossain Lipu & Md. Imamul Islam & Ratil H. Ashique & Zubaeer Bin Shams & Mohammad Asif ul Haq & Md. Hasan Maruf & ASM Shihavuddin, 2023. "The Effects of Non-Uniformly-Aged Photovoltaic Array on Mismatch Power Loss: A Practical Investigation towards Novel Hybrid Array Configurations," Sustainability, MDPI, vol. 15(17), pages 1-17, September.
    6. Su-Hee Lee & Yong-Chul Jang, 2023. "Analysis for End-of-Life Solar Panel Generations by Renewable Energy Supply towards Carbon Neutrality in South Korea," Energies, MDPI, vol. 16(24), pages 1-15, December.
    7. Souza, Vanessa & Rodrigues Figueiredo, Adriano Marcos & Santos Bortolocci Espejo, Márcia Maria dos, 2024. "Challenges and strategies for managing end-of-life photovoltaic equipment in Brazil: Learning from international experience," Energy Policy, Elsevier, vol. 188(C).
    8. Fabian Schoden & Anna Katharina Schnatmann & Tomasz Blachowicz & Hildegard Manz-Schumacher & Eva Schwenzfeier-Hellkamp, 2022. "Circular Design Principles Applied on Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 14(22), pages 1-32, November.
    9. Kyounga Lee & Jongmun Cha, 2020. "Towards Improved Circular Economy and Resource Security in South Korea," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    10. Farizal Farizal & Muhammad Aqil Noviandri & Hanif Hamdani, 2024. "Sustainability Development through a Nearly Zero Energy Building Implementation Case: An Office Building in South Jakarta," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    11. Vishnu S Prabhu & Shraddha Shrivastava & Kakali Mukhopadhyay, 2022. "Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach," Circular Economy and Sustainability, Springer, vol. 2(2), pages 507-534, June.
    12. Magdalena Bogacka & Martyna Potempa & Bartłomiej Milewicz & Dariusz Lewandowski & Krzysztof Pikoń & Katarzyna Klejnowska & Piotr Sobik & Edyta Misztal, 2020. "PV Waste Thermal Treatment According to the Circular Economy Concept," Sustainability, MDPI, vol. 12(24), pages 1-13, December.
    13. Preeti Nain & Arun Kumar, 2023. "Understanding manufacturers’ and consumers’ perspectives towards end-of-life solar photovoltaic waste management and recycling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2264-2284, March.
    14. Jin-Li Hu & Min-Yueh Chuang, 2023. "The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy," Energies, MDPI, vol. 16(17), pages 1-16, August.
    15. Wang, Chen & Feng, Kuishuang & Liu, Xi & Wang, Peng & Chen, Wei-Qiang & Li, Jiashuo, 2022. "Looming challenge of photovoltaic waste under China’s solar ambition: A spatial–temporal assessment," Applied Energy, Elsevier, vol. 307(C).
    16. Nándor Bozsik & András Szeberényi & Norbert Bozsik, 2024. "Impact of Climate Change on Electric Energy Production from Medium-Size Photovoltaic Module Systems Based on RCP Climate Scenarios," Energies, MDPI, vol. 17(16), pages 1-32, August.
    17. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2023. "Effect of Recycling on the Environmental Impact of a High-Efficiency Photovoltaic Module Combining Space-Grade Solar Cells and Optical Micro-Tracking," Energies, MDPI, vol. 16(8), pages 1-13, April.
    18. Pin-Han Chen & Wei-Sheng Chen & Cheng-Han Lee & Jun-Yi Wu, 2023. "Comprehensive Review of Crystalline Silicon Solar Panel Recycling: From Historical Context to Advanced Techniques," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    19. Lucía Doyle & German Cavero & Mircea Modreanu, 2023. "Applying the 12 Principles of Green Engineering in Low TRL Electronics: A Case Study of an Energy-Harvesting Platform," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    20. Koo Lee & Sung Bae Cho & Junsin Yi & Hyo Sik Chang, 2022. "Simplified Recovery Process for Resistive Solder Bond (RSB) Hotspots Caused by Poor Soldering of Crystalline Silicon Photovoltaic Modules Using Resin," Energies, MDPI, vol. 15(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5785-:d:1430464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.