IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2172-d352988.html
   My bibliography  Save this article

Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids

Author

Listed:
  • Michał Kozioł

    (Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland)

Abstract

This article presents the results of the analysis of energy distribution of optical radiation emitted by electrical discharges in insulating liquids, such as synthetic ester, natural ester, and mineral oil. The measurements of optical radiation were carried out on a system of needle–needle type electrodes and on a system for surface discharges, which were immersed in brand new insulating liquids. Optical radiation was recorded using optical spectrophotometry method. On the basis of the obtained results, potential possibilities of using the analysis of the energy distribution of optical radiation as an additional descriptor for the recognition of individual sources of electric discharges were indicated. The results can also be used in the design of various types of detectors, as well as high-voltage diagnostic systems and arc protection systems.

Suggested Citation

  • Michał Kozioł, 2020. "Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids," Energies, MDPI, vol. 13(9), pages 1-9, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2172-:d:352988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak, 2019. "Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers," Energies, MDPI, vol. 12(11), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pawel Rozga & Abderahhmane Beroual, 2021. "High Voltage Insulating Materials—Current State and Prospects," Energies, MDPI, vol. 14(13), pages 1-4, June.
    2. Alper Aydogan & Fatih Atalar & Aysel Ersoy Yilmaz & Pawel Rozga, 2020. "Using the Method of Harmonic Distortion Analysis in Partial Discharge Assessment in Mineral Oil in a Non-Uniform Electric Field," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Łukasz Nagi & Michał Kozioł & Jarosław Zygarlicki, 2020. "Comparative Analysis of Optical Radiation Emitted by Electric Arc Generated at AC and DC Voltage," Energies, MDPI, vol. 13(19), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    2. Maciej Kuniewski, 2020. "FRA Diagnostics Measurement of Winding Deformation in Model Single-Phase Transformers Made with Silicon-Steel, Amorphous and Nanocrystalline Magnetic Cores," Energies, MDPI, vol. 13(10), pages 1-23, May.
    3. Patryk Bohatyrewicz & Andrzej Mrozik, 2021. "The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index," Energies, MDPI, vol. 14(16), pages 1-14, August.
    4. Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak & Zbigniew Szymanski, 2020. "Using the Analysis of the Gases Dissolved in Oil in Diagnosis of Transformer Bushings with Paper-Oil Insulation—A Case Study," Energies, MDPI, vol. 13(24), pages 1-12, December.
    5. Ancuța-Mihaela Aciu & Claudiu-Ionel Nicola & Marcel Nicola & Maria-Cristina Nițu, 2021. "Complementary Analysis for DGA Based on Duval Methods and Furan Compounds Using Artificial Neural Networks," Energies, MDPI, vol. 14(3), pages 1-22, January.
    6. Pawel Zukowski & Przemyslaw Rogalski & Tomasz N. Koltunowicz & Konrad Kierczynski & Vitalii Bondariev, 2020. "Precise Measurements of the Temperature-Frequency Dependence of the Conductivity of Cellulose—Insulating Oil—Water Nanoparticles Composite," Energies, MDPI, vol. 14(1), pages 1-26, December.
    7. Eugeniusz Kornatowski & Szymon Banaszak, 2019. "Frequency Response Quality Index for Assessing the Mechanical Condition of Transformer Windings," Energies, MDPI, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2172-:d:352988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.