IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1613-d340190.html
   My bibliography  Save this article

Combined ANFIS–Wavelet Technique to Improve the Estimation Accuracy of the Power Output of Neighboring PV Systems during Cloud Events

Author

Listed:
  • Hasanain A. H. Al-Hilfi

    (School of Electrical Engineering and Computing, Curtin University, Perth 6102, Australia
    Computer Center, Basrah University, Basrah 61028, Iraq)

  • Ahmed Abu-Siada

    (School of Electrical Engineering and Computing, Curtin University, Perth 6102, Australia)

  • Farhad Shahnia

    (School of Engineering and Information Technology, Murdoch University, Murdoch 6150, Australia)

Abstract

The short-term variability of photovoltaic (PV) system-generated power due to ambient conditions, such as passing clouds, represents a key challenge for network planners and operators. Such variability can be reduced using a geographical smoothing technique based on installing multiple PV systems over certain locations at distances of meters to kilometers. To accurately estimate the PV system’s generated power during cloud events, a variability reduction index ( VRI ), which is a function of several parameters, should be calculated precisely. In this paper, the Wavelet Transform Technique ( WTT ) along with Adaptive Neuro Fuzzy Inference System (ANFIS) are used to develop new models to estimate the PV system’s power output during cloud events. In this context, irradiance data collected from one PV system along with other parameters, including ambient conditions, were used to develop the proposed models. Ultimately, the models were validated through their application on a 0.7 km 2 PV plant with 16 rooftop PV systems in Brisbane, Australia.

Suggested Citation

  • Hasanain A. H. Al-Hilfi & Ahmed Abu-Siada & Farhad Shahnia, 2020. "Combined ANFIS–Wavelet Technique to Improve the Estimation Accuracy of the Power Output of Neighboring PV Systems during Cloud Events," Energies, MDPI, vol. 13(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1613-:d:340190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Yuchen & Cheng, John W.M. & Duan, Qinwei & Lee, Cheuk Wing & Zhong, Jin, 2019. "Evaluating the variability of photovoltaics: A new stochastic method to generate site-specific synthetic solar data and applications to system studies," Renewable Energy, Elsevier, vol. 133(C), pages 1099-1107.
    2. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2014. "Managing solar-PV variability with geographical dispersion: An Ontario (Canada) case-study," Renewable Energy, Elsevier, vol. 68(C), pages 171-180.
    3. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao-Rong Chen & Faouzi Brice Ouedraogo & Yu-Ming Chang & Devita Ayu Larasati & Shih-Wei Tan, 2021. "Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS," Mathematics, MDPI, vol. 9(19), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keeratimahat, Kanyawee & Bruce, Anna & MacGill, Iain, 2021. "Analysis of short-term operational forecast deviations and controllability of utility-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 167(C), pages 343-358.
    2. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    3. Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2024. "Temporal upscaling of solar radiation components using an analytical model for variability modeling," Renewable Energy, Elsevier, vol. 229(C).
    4. Jiang, Hou & Lu, Ning & Yao, Ling & Qin, Jun & Liu, Tang, 2023. "Impact of climate changes on the stability of solar energy: Evidence from observations and reanalysis," Renewable Energy, Elsevier, vol. 208(C), pages 726-736.
    5. Shivashankar, S. & Mekhilef, Saad & Mokhlis, Hazlie & Karimi, M., 2016. "Mitigating methods of power fluctuation of photovoltaic (PV) sources – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1170-1184.
    6. Caldas, M. & Alonso-Suárez, R., 2019. "Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements," Renewable Energy, Elsevier, vol. 143(C), pages 1643-1658.
    7. Huy, Phung Dang & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao & Ekanayake, Janaka B., 2020. "Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage," Energy, Elsevier, vol. 195(C).
    8. Tang, Yuchen & Cheng, John W.M. & Duan, Qinwei & Lee, Cheuk Wing & Zhong, Jin, 2019. "Evaluating the variability of photovoltaics: A new stochastic method to generate site-specific synthetic solar data and applications to system studies," Renewable Energy, Elsevier, vol. 133(C), pages 1099-1107.
    9. Rosenbloom, Daniel & Meadowcroft, James, 2014. "Harnessing the Sun: Reviewing the potential of solar photovoltaics in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 488-496.
    10. Richardson, David B. & Harvey, L.D.D., 2015. "Strategies for correlating solar PV array production with electricity demand," Renewable Energy, Elsevier, vol. 76(C), pages 432-440.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1613-:d:340190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.