IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p839-d320779.html
   My bibliography  Save this article

Accuracy Analysis of DNN-Based Pose-Categorization Model and Activity-Decision Algorithm

Author

Listed:
  • Bo Rang Park

    (School of Architecture and Building Science, Chung-Ang University, Seoul 06974, Korea)

  • Eun Ji Choi

    (School of Architecture and Building Science, Chung-Ang University, Seoul 06974, Korea)

  • Young Jae Choi

    (School of Architecture and Building Science, Chung-Ang University, Seoul 06974, Korea)

  • Jin Woo Moon

    (School of Architecture and Building Science, Chung-Ang University, Seoul 06974, Korea)

Abstract

The objective of this study is to develop (1) a pose-categorization model that classifies the poses of an occupant based on their image in an indoor space and (2) an activity-decision algorithm that identifies the activity being performed by the occupant. For developing an automated intelligent model, a deep neural network is adopted. The model considers the coordinates of the joints of the occupant in the image as input data and returns the pose of the occupant. Datasets composed of indoor images of home and office environments are used for training and testing the model. The training and testing accuracies of the optimized model were 100% for both the home and office environments. A representative activity of an occupant for a certain period has to be decided to control an indoor environment for comfort. The activity-decision algorithm employs a frequency-based method to determine the representative activity type for real-time occupant poses using the pose-categorization model. This study highlights the potential of the developed model and algorithm to determine the activity of occupants to provide an optimal thermal environment corresponding to the individual’s metabolic rate.

Suggested Citation

  • Bo Rang Park & Eun Ji Choi & Young Jae Choi & Jin Woo Moon, 2020. "Accuracy Analysis of DNN-Based Pose-Categorization Model and Activity-Decision Algorithm," Energies, MDPI, vol. 13(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:839-:d:320779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eun Ji Choi & Jin Woo Moon & Ji-hoon Han & Yongseok Yoo, 2021. "Development of a Deep Neural Network Model for Estimating Joint Location of Occupant Indoor Activities for Providing Thermal Comfort," Energies, MDPI, vol. 14(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
    2. Amir Shahcheraghian & Adrian Ilinca, 2024. "Advanced Machine Learning Techniques for Energy Consumption Analysis and Optimization at UBC Campus: Correlations with Meteorological Variables," Energies, MDPI, vol. 17(18), pages 1-22, September.
    3. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    4. Moaaz Elkabalawy & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2024. "CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
    5. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    6. Fu, Chun & Miller, Clayton, 2022. "Using Google Trends as a proxy for occupant behavior to predict building energy consumption," Applied Energy, Elsevier, vol. 310(C).
    7. Rongjiang Ma & Shen Yang & Xianlin Wang & Xi-Cheng Wang & Ming Shan & Nanyang Yu & Xudong Yang, 2020. "Systematic Method for the Energy-Saving Potential Calculation of Air-Conditioning Systems via Data Mining. Part I: Methodology," Energies, MDPI, vol. 14(1), pages 1-15, December.
    8. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    9. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    10. Jessica Walther & Matthias Weigold, 2021. "A Systematic Review on Predicting and Forecasting the Electrical Energy Consumption in the Manufacturing Industry," Energies, MDPI, vol. 14(4), pages 1-24, February.
    11. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    12. Stefano Villa & Claudio Sassanelli, 2020. "The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature," Energies, MDPI, vol. 13(24), pages 1-23, December.
    13. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    14. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    15. Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
    16. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    17. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    18. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    19. Liu, Yiren & Zhao, Xiangyu & Qin, S. Joe, 2024. "Dynamically engineered multi-modal feature learning for predictions of office building cooling loads," Applied Energy, Elsevier, vol. 355(C).
    20. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:839-:d:320779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.