IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p818-d320318.html
   My bibliography  Save this article

Experiments and Modeling for Flexible Biogas Production by Co-Digestion of Food Waste and Sewage Sludge

Author

Listed:
  • Yiyun Liu

    (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China)

  • Tao Huang

    (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China)

  • Xiaofeng Li

    (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China)

  • Jingjing Huang

    (Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

  • Daoping Peng

    (Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China)

  • Claudia Maurer

    (Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

  • Martin Kranert

    (Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany)

Abstract

This paper explores the feasibility of flexible biogas production by co-digestion of food waste and sewage sludge based on experiments and mathematical modeling. First, laboratory-scale experiments were carried out in variable operating conditions in terms of organic loading rate and feeding frequency to the digester. It is demonstrated that biogas production can achieve rapid responses to arbitrary feedings through co-digestion, and the stability of the anaerobic digestion process is not affected by the overloading of substrates. Compared with the conventional continuous mode, the required biogas storage capacity in flexible feeding mode can be significantly reduced. The optimum employed feeding organic loading rate (OLR) is identified, and how to adjust the feeding scheme for flexible biogas production is also discussed. Finally, a simplified prediction model for flexible biogas production is proposed and verified by experimental data, which could be conveniently used for demand-oriented control. It is expected that this research could give some theoretical basis for the enhancement of biogas utilization efficiency, thus expanding the applications of bio-energy.

Suggested Citation

  • Yiyun Liu & Tao Huang & Xiaofeng Li & Jingjing Huang & Daoping Peng & Claudia Maurer & Martin Kranert, 2020. "Experiments and Modeling for Flexible Biogas Production by Co-Digestion of Food Waste and Sewage Sludge," Energies, MDPI, vol. 13(4), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:818-:d:320318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Lauer & Daniela Thrän, 2018. "Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation," Energies, MDPI, vol. 11(4), pages 1-24, March.
    2. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    3. Szarka, Nora & Scholwin, Frank & Trommler, Marcus & Fabian Jacobi, H. & Eichhorn, Marcus & Ortwein, Andreas & Thrän, Daniela, 2013. "A novel role for bioenergy: A flexible, demand-oriented power supply," Energy, Elsevier, vol. 61(C), pages 18-26.
    4. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    5. Zealand, A.M. & Roskilly, A.P. & Graham, D.W., 2017. "Effect of feeding frequency and organic loading rate on biomethane production in the anaerobic digestion of rice straw," Applied Energy, Elsevier, vol. 207(C), pages 156-165.
    6. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    7. Xiaofeng Li & Jingjing Huang & Yiyun Liu & Tao Huang & Claudia Maurer & Martin Kranert, 2019. "Effects of Salt on Anaerobic Digestion of Food Waste with Different Component Characteristics and Fermentation Concentrations," Energies, MDPI, vol. 12(18), pages 1-14, September.
    8. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    9. Ervin Saracevic & Susanne Frühauf & Angela Miltner & Kwankao Karnpakdee & Bernhard Munk & Michael Lebuhn & Bernhard Wlcek & Jonas Leber & Javier Lizasoain & Anton Friedl & Andreas Gronauer & Alexander, 2019. "Utilization of Food and Agricultural Residues for a Flexible Biogas Production: Process Stability and Effects on Needed Biogas Storage Capacities," Energies, MDPI, vol. 12(14), pages 1-23, July.
    10. Lemmer, Andreas & Krümpel, Johannes, 2017. "Demand-driven biogas production in anaerobic filters," Applied Energy, Elsevier, vol. 185(P1), pages 885-894.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    2. Shi, Yi & Xu, Jiuping, 2023. "A multi-objective approach to kitchen waste and excess sludge co-digestion for biomethane production with anaerobic digestion," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    2. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    3. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    4. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    5. Lora Grando, Rafaela & de Souza Antune, Adelaide Maria & da Fonseca, Fabiana Valéria & Sánchez, Antoni & Barrena, Raquel & Font, Xavier, 2017. "Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 44-53.
    6. Lauer, Markus & Leprich, Uwe & Thrän, Daniela, 2020. "Economic assessment of flexible power generation from biogas plants in Germany's future electricity system," Renewable Energy, Elsevier, vol. 146(C), pages 1471-1485.
    7. Stürmer, Bernhard & Theuretzbacher, Franz & Saracevic, Ervin, 2021. "Opportunities for the integration of existing biogas plants into the Austrian electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Ervin Saracevic & Susanne Frühauf & Angela Miltner & Kwankao Karnpakdee & Bernhard Munk & Michael Lebuhn & Bernhard Wlcek & Jonas Leber & Javier Lizasoain & Anton Friedl & Andreas Gronauer & Alexander, 2019. "Utilization of Food and Agricultural Residues for a Flexible Biogas Production: Process Stability and Effects on Needed Biogas Storage Capacities," Energies, MDPI, vol. 12(14), pages 1-23, July.
    10. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    11. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    12. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    13. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    14. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
    15. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    16. Li, Aitong & Xu, Yuan & Shiroyama, Hideaki, 2019. "Solar lobby and energy transition in Japan," Energy Policy, Elsevier, vol. 134(C).
    17. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    18. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    19. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    20. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:818-:d:320318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.