IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p796-d319549.html
   My bibliography  Save this article

Product Distribution and Characteristics of Pyrolyzing Microalgae ( Nannochloropsis oculata ), Cotton Gin Trash, and Cattle Manure as a Cobiomass

Author

Listed:
  • Muhammad U. Hanif

    (Institute of Environmental Science and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 45710, Pakistan)

  • Mohammed Zwawi

    (Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Sergio C. Capareda

    (Bio-Energy Testing and Analysis Laboratory (BETA Lab), Biological and Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA)

  • Hamid Iqbal

    (Rawalpindi Waste Management Company, A-81, Iran Road, Satellite Town 46300, Rawalpindi, Pakistan)

  • Mohammed Algarni

    (Department of Mechanical Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Bassem F. Felemban

    (Mechanical Engineering Department, Taif University, Taif 26571, Saudi Arabia)

  • Ali Bahadar

    (Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Adeel Waqas

    (Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad 45710, Pakistan)

Abstract

Microalgae has proven potential for producing products that are accepted as an alternate energy source. An attempt is made to further improve the efficiency of pyrolysis in terms of product yields and characteristics by adding cotton gin trash and cattle manure as a mixed feedstock (cobiomass). A statistically significant number of treatments were made by mixing different amounts of cotton gin trash and cattle manure with microalgae ( Nannochloropsis oculata ). These treatments were pyrolyzed at different temperatures (400 to 600 °C ) and product yields and characteristics were analyzed. The pyrolysis of cobiomass resulted in higher yield for bio-oil and char as compared to microalgae alone. An operating temperature of 500 °C was found to be the best suitable for high bio-oil yield. The high heating values (hhv) of bio-oil were observed to be maximum at 500 °C and for syngas and char, the heating value slightly increased with further increase in temperature. Comparatively, the bio-oil (30 MJ/kg) had higher heating values than char (17 MJ/kg) and syngas (13 MJ/kg). The combustible material decreased whereas fixed carbon and ash content increased in char with an increase in temperature. The bio-oil produced from cobiomass had abundant aliphatics and aromatics with low nitrogen content making it a better alternative fuel than bio-oil produced by microalgae alone. The mixing of different biomass helped improving not just the quantity but also the quality of products.

Suggested Citation

  • Muhammad U. Hanif & Mohammed Zwawi & Sergio C. Capareda & Hamid Iqbal & Mohammed Algarni & Bassem F. Felemban & Ali Bahadar & Adeel Waqas, 2020. "Product Distribution and Characteristics of Pyrolyzing Microalgae ( Nannochloropsis oculata ), Cotton Gin Trash, and Cattle Manure as a Cobiomass," Energies, MDPI, vol. 13(4), pages 1-10, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:796-:d:319549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/796/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/796/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    2. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    2. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    3. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    4. Jiang, Chunlong & Lin, Qizhao & Wang, Chengxin & Jiang, Xuedan & Bi, Haobo & Bao, Lin, 2020. "Experimental study of the ignition and combustion characteristics of cattle manure under different environmental conditions," Energy, Elsevier, vol. 197(C).
    5. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    6. Li, Jiawei & Fan, Subo & Zhang, Xuyang & Chen, Zhichao & Qiao, Yanyu & Yuan, Zhenhua & Zeng, Lingyan & Li, Zhengqi, 2022. "Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash," Energy, Elsevier, vol. 251(C).
    7. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    8. Hu, Mao & Guo, Kai & Zhou, Haiqin & Shen, Fei & Zhu, Wenkun & Dai, Lichun, 2024. "Insights into the kinetics, thermodynamics and evolved gases for the pyrolysis of freshly excreted and solid-liquid separated swine manures," Energy, Elsevier, vol. 288(C).
    9. Jin, Yanghao & Liu, Sirui & Shi, Ziyi & Wang, Shule & Wen, Yuming & Zaini, Ilman Nuran & Tang, Chuchu & Hedenqvist, Mikael S. & Lu, Xincheng & Kawi, Sibudjing & Wang, Chi-Hwa & Jiang, Jianchun & Jönss, 2024. "A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass," Energy, Elsevier, vol. 295(C).
    10. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    11. Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2019. "Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes," Renewable Energy, Elsevier, vol. 142(C), pages 147-157.
    12. Beims, R.F. & Simonato, C.L. & Wiggers, V.R., 2019. "Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 521-529.
    13. Gao, Mingqiang & Cheng, Cheng & Miao, Zhenyong & Wan, Keji & He, Qiongqiong, 2023. "Physicochemical properties, combustion kinetics and thermodynamics of oxidized lignite," Energy, Elsevier, vol. 268(C).
    14. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    15. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    16. Amarasekara, Ananda S. & Gutierrez Reyes, Cristian D., 2019. "Brønsted acidic ionic liquid catalyzed one-pot conversion of cellulose to furanic biocrude and identification of the products using LC-MS," Renewable Energy, Elsevier, vol. 136(C), pages 352-357.
    17. Chen, Zhiyun & Chen, Huashan & Wu, Xieyuan & Zhang, Junhui & Evrendilek, Deniz Eren & Liu, Jingyong & Liang, Guanjie & Li, Weixin, 2021. "Temperature- and heating rate-dependent pyrolysis mechanisms and emissions of Chinese medicine residues and numerical reconstruction and optimization of their non-linear dynamics," Renewable Energy, Elsevier, vol. 164(C), pages 1408-1423.
    18. Chen, Zhiyun & Liu, Jingyong & Chen, Huashan & Ding, Ziyi & Tang, Xiaojie & Evrendilek, Fatih, 2022. "Oxy-fuel and air atmosphere combustions of Chinese medicine residues: Performances, mechanisms, flue gas emission, and ash properties," Renewable Energy, Elsevier, vol. 182(C), pages 102-118.
    19. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    20. Wen, Shaoting & Yan, Youping & Liu, Jingyong & Buyukada, Musa & Evrendilek, Fatih, 2019. "Pyrolysis performance, kinetic, thermodynamic, product and joint optimization analyses of incense sticks in N2 and CO2 atmospheres," Renewable Energy, Elsevier, vol. 141(C), pages 814-827.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:796-:d:319549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.