IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p595-d313984.html
   My bibliography  Save this article

Influence of Aging on Oil Degradation and Gassing Tendency for Mineral oil and Synthetic Ester under Low Energy Discharge Electrical Faults

Author

Listed:
  • L. Loiselle

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • U. Mohan Rao

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • I. Fofana

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

Abstract

The intent of this work is to understand the influence of low energy discharge electric faults in mineral oil and synthetic esters on liquid degradation and gassing tendency at different aging conditions (based on acidity values). A low energy discharge electric fault has been created by continuous discharge of 9 kV for five hours on the liquid surface using a suitable laboratory setup. Liquid degradation is reported by adopting UV spectroscopy, turbidity, and particle counter measurements. The gassing tendency is understood by dissolved gas analysis using Duval’s triangle and Duval’s pentagon methods for mineral oil and non-mineral oils accordingly. It is observed that the influence of low energy discharges on liquid degradation is higher in mineral oils than synthetic esters. The fault gasses in mineral oil are involved with electrical and thermal faults accompanied by stray gassing whereas only partial discharge activity is noticed for synthetic esters. Importantly, the existence of low energy discharge faults like corona discharges will involve a generation of excess high molecular weight products as compared to low molecular weight products that are soluble in liquid volume.

Suggested Citation

  • L. Loiselle & U. Mohan Rao & I. Fofana, 2020. "Influence of Aging on Oil Degradation and Gassing Tendency for Mineral oil and Synthetic Ester under Low Energy Discharge Electrical Faults," Energies, MDPI, vol. 13(3), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:595-:d:313984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiktor Kunikowski & Pawel Rozga & Bartlomiej Pasternak & Jakub Staniewski & Filip Stuchala & Konrad Strzelecki, 2024. "Impact of Electrode Distance in a Quasi-Uniform Model Electrode System on Lightning Impulse Breakdown Voltage in Various Insulating Liquids," Energies, MDPI, vol. 17(4), pages 1-18, February.
    2. Andrei Manea & Teodora Gorjanu & Andreea Lazeanu & Laurentiu Marius Dumitran, 2022. "Effect of Electrical Accelerated Aging on DC Resistivity of Mineral Oil Used in Power Transformers," Energies, MDPI, vol. 16(1), pages 1-12, December.
    3. Luc Loiselle & U. Mohan Rao & Issouf Fofana, 2020. "Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions," Energies, MDPI, vol. 13(13), pages 1-15, July.
    4. Belén García & Alfredo Ortiz & Carlos Renedo & Diego Fernando García & Andrés Montero, 2021. "Use Performance and Management of Biodegradable Fluids as Transformer Insulation," Energies, MDPI, vol. 14(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Przybylek, 2023. "Determination of Mineral Oil Concentration in the Mixture with Synthetic Ester Using Near-Infrared Spectroscopy," Energies, MDPI, vol. 16(17), pages 1-12, September.
    2. Pawel Rozga & Abderrahmane Beroual & Piotr Przybylek & Maciej Jaroszewski & Konrad Strzelecki, 2020. "A Review on Synthetic Ester Liquids for Transformer Applications," Energies, MDPI, vol. 13(23), pages 1-33, December.
    3. Tomasz N. Kołtunowicz & Konrad Kierczynski & Pawel Okal & Aleksy Patryn & Miroslav Gutten, 2022. "Diagnostics on the Basis of the Frequency-Temperature Dependences of the Loss Angle Tangent of Heavily Moistured Oil-Impregnated Pressboard," Energies, MDPI, vol. 15(8), pages 1-14, April.
    4. Hubert Moranda & Jaroslaw Gielniak & Ireneusz Kownacki, 2021. "Assessment of Concentration of Mineral Oil in Synthetic Ester Based on the Density of the Mixture and the Capacitance of the Capacitor Immersed in It," Energies, MDPI, vol. 14(7), pages 1-12, March.
    5. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    6. Kamil Lewandowski & Hubert Moranda & Radoslaw Szewczyk, 2023. "Bubble Effect Phenomenon in Modern Transformer Insulation Systems Using Aramid-Based Materials and Alternative Insulating Liquids," Energies, MDPI, vol. 16(14), pages 1-15, July.
    7. Mateusz Cybulski & Piotr Przybylek, 2021. "Application of Molecular Sieves for Drying Transformers Insulated with Mineral Oil, Natural Ester, or Synthetic Ester," Energies, MDPI, vol. 14(6), pages 1-13, March.
    8. Zbigniew Nadolny, 2022. "Impact of Changes in Limit Values of Electric and Magnetic Field on Personnel Performing Diagnostics of Transformers," Energies, MDPI, vol. 15(19), pages 1-15, October.
    9. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Mateusz Cybulski, 2020. "Laboratory Model Studies on the Drying Efficiency of Transformer Cellulose Insulation Using Synthetic Ester," Energies, MDPI, vol. 13(13), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:595-:d:313984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.