Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jungwon Yu & June Ho Park & Sungshin Kim, 2018. "A New Input Selection Algorithm Using the Group Method of Data Handling and Bootstrap Method for Support Vector Regression Based Hourly Load Forecasting," Energies, MDPI, vol. 11(11), pages 1-20, October.
- Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
- Solomon Asante-Okyere & Chuanbo Shen & Yao Yevenyo Ziggah & Mercy Moses Rulegeya & Xiangfeng Zhu, 2018. "Investigating the Predictive Performance of Gaussian Process Regression in Evaluating Reservoir Porosity and Permeability," Energies, MDPI, vol. 11(12), pages 1-13, November.
- Shaghaghi, Saba & Bonakdari, Hossein & Gholami, Azadeh & Ebtehaj, Isa & Zeinolabedini, Maryam, 2017. "Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 271-286.
- J. -A. Müller & A. G. Ivachnenko & F. Lemke, 1998. "GMDH algorithms for complex systems modelling," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 4(4), pages 275-316, January.
- Chuanbo Shen & Solomon Asante-Okyere & Yao Yevenyo Ziggah & Liang Wang & Xiangfeng Zhu, 2019. "Group Method of Data Handling (GMDH) Lithology Identification Based on Wavelet Analysis and Dimensionality Reduction as Well Log Data Pre-Processing Techniques," Energies, MDPI, vol. 12(8), pages 1-16, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Reza Rezaee, 2022. "Editorial on Special Issues of Development of Unconventional Reservoirs," Energies, MDPI, vol. 15(7), pages 1-9, April.
- Mulashani, Alvin K. & Shen, Chuanbo & Nkurlu, Baraka M. & Mkono, Christopher N. & Kawamala, Martin, 2022. "Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data," Energy, Elsevier, vol. 239(PA).
- Rana Muhammad Adnan & Salim Heddam & Zaher Mundher Yaseen & Shamsuddin Shahid & Ozgur Kisi & Binquan Li, 2020. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Edyta Puskarczyk, 2020. "Application of Multivariate Statistical Methods and Artificial Neural Network for Facies Analysis from Well Logs Data: an Example of Miocene Deposits," Energies, MDPI, vol. 13(7), pages 1-18, March.
- Mulashani, Alvin K. & Shen, Chuanbo & Nkurlu, Baraka M. & Mkono, Christopher N. & Kawamala, Martin, 2022. "Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data," Energy, Elsevier, vol. 239(PA).
- Karbasi, Masoud & Jamei, Mehdi & Malik, Anurag & Kisi, Ozgur & Yaseen, Zaher Mundher, 2023. "Multi-steps drought forecasting in arid and humid climate environments: Development of integrative machine learning model," Agricultural Water Management, Elsevier, vol. 281(C).
- Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Chuanbo Shen & Solomon Asante-Okyere & Yao Yevenyo Ziggah & Liang Wang & Xiangfeng Zhu, 2019. "Group Method of Data Handling (GMDH) Lithology Identification Based on Wavelet Analysis and Dimensionality Reduction as Well Log Data Pre-Processing Techniques," Energies, MDPI, vol. 12(8), pages 1-16, April.
- Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
- Mkono, Christopher N. & Chuanbo, Shen & Mulashani, Alvin K. & Mwakipunda, Grant Charles, 2023. "Deep learning integrated approach for hydrocarbon source rock evaluation and geochemical indicators prediction in the Jurassic - Paleogene of the Mandawa basin, SE Tanzania," Energy, Elsevier, vol. 284(C).
- Samuel-Soma M. Ajibade & Festus Victor Bekun & Festus Fatai Adedoyin & Bright Akwasi Gyamfi & Anthonia Oluwatosin Adediran, 2023. "Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021)," Clean Technol., MDPI, vol. 5(2), pages 1-21, April.
- Lintao Yang & Honggeng Yang & Haitao Liu, 2018. "GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
- Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Heydari, Azim & Astiaso Garcia, Davide & Keynia, Farshid & Bisegna, Fabio & De Santoli, Livio, 2019. "A novel composite neural network based method for wind and solar power forecasting in microgrids," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Zhixue Sun & Baosheng Jiang & Xiangling Li & Jikang Li & Kang Xiao, 2020. "A Data-Driven Approach for Lithology Identification Based on Parameter-Optimized Ensemble Learning," Energies, MDPI, vol. 13(15), pages 1-15, July.
- Muhammad Naeim Mohd Aris & Hanita Daud & Khairul Arifin Mohd Noh & Sarat Chandra Dass, 2021. "Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
- Bonakdari, Hossein & Khozani, Zohreh Sheikh & Zaji, Amir Hossein & Asadpour, Navid, 2018. "Evaluating the apparent shear stress in prismatic compound channels using the Genetic Algorithm based on Multi-Layer Perceptron: A comparative study," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 400-411.
- Cheng, Kai & Lu, Zhenzhou, 2019. "Time-variant reliability analysis based on high dimensional model representation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 310-319.
- Sebastian Waszkiewicz & Paulina I. Krakowska-Madejska, 2021. "Vitrinite Equivalent Reflectance Estimation from Improved Maturity Indicator and Well Logs Based on Statistical Methods," Energies, MDPI, vol. 14(19), pages 1-16, September.
- Spiessl, Sabine M. & Kucherenko, Sergei & Becker, Dirk-A. & Zaccheus, Oluyemi, 2019. "Higher-order sensitivity analysis of a final repository model with discontinuous behaviour using the RS-HDMR meta-modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 149-158.
- Mohammad Hosein Sabzalian & Khalid A. Alattas & Fayez F. M. El-Sousy & Ardashir Mohammadzadeh & Saleh Mobayen & Mai The Vu & Mauricio Aredes, 2022. "A Neural Controller for Induction Motors: Fractional-Order Stability Analysis and Online Learning Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
- Chongshi Gu & Xiao Fu & Chenfei Shao & Zhongwen Shi & Huaizhi Su, 2020. "Application of Spatiotemporal Hybrid Model of Deformation in Safety Monitoring of High Arch Dams: A Case Study," IJERPH, MDPI, vol. 17(1), pages 1-25, January.
- Cenk Temizel & Uchenna Odi & Karthik Balaji & Hakki Aydin & Javier E. Santos, 2022. "Classifying Facies in 3D Digital Rock Images Using Supervised and Unsupervised Approaches," Energies, MDPI, vol. 15(20), pages 1-15, October.
More about this item
Keywords
permeability; group method of data handling; artificial neural network; well logs; sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:551-:d:312377. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.