Investigating the Predictive Performance of Gaussian Process Regression in Evaluating Reservoir Porosity and Permeability
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rana Muhammad Adnan Ikram & Xinyi Cao & Kulwinder Singh Parmar & Ozgur Kisi & Shamsuddin Shahid & Mohammad Zounemat-Kermani, 2023. "Modeling Significant Wave Heights for Multiple Time Horizons Using Metaheuristic Regression Methods," Mathematics, MDPI, vol. 11(14), pages 1-24, July.
- Muhammad Naeim Mohd Aris & Hanita Daud & Khairul Arifin Mohd Noh & Sarat Chandra Dass, 2021. "Stochastic Process-Based Inversion of Electromagnetic Data for Hydrocarbon Resistivity Estimation in Seabed Logging," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
- Edyta Puskarczyk, 2020. "Application of Multivariate Statistical Methods and Artificial Neural Network for Facies Analysis from Well Logs Data: an Example of Miocene Deposits," Energies, MDPI, vol. 13(7), pages 1-18, March.
- Baraka Mathew Nkurlu & Chuanbo Shen & Solomon Asante-Okyere & Alvin K. Mulashani & Jacqueline Chungu & Liang Wang, 2020. "Prediction of Permeability Using Group Method of Data Handling (GMDH) Neural Network from Well Log Data," Energies, MDPI, vol. 13(3), pages 1-18, January.
- Chuanbo Shen & Solomon Asante-Okyere & Yao Yevenyo Ziggah & Liang Wang & Xiangfeng Zhu, 2019. "Group Method of Data Handling (GMDH) Lithology Identification Based on Wavelet Analysis and Dimensionality Reduction as Well Log Data Pre-Processing Techniques," Energies, MDPI, vol. 12(8), pages 1-16, April.
- Mulashani, Alvin K. & Shen, Chuanbo & Nkurlu, Baraka M. & Mkono, Christopher N. & Kawamala, Martin, 2022. "Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data," Energy, Elsevier, vol. 239(PA).
More about this item
Keywords
Gaussian process regression; porosity; permeability; artificial neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3261-:d:184993. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.