Enhancing the Economic Viability of Anaerobic Digestion by Exploiting the Whole Biomass of Mango Waste and Its Residues after Digestion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dutta, Kasturi & Daverey, Achlesh & Lin, Jih-Gaw, 2014. "Evolution retrospective for alternative fuels: First to fourth generation," Renewable Energy, Elsevier, vol. 69(C), pages 114-122.
- Ehimen, E.A. & Sun, Z.F. & Carrington, C.G. & Birch, E.J. & Eaton-Rye, J.J., 2011. "Anaerobic digestion of microalgae residues resulting from the biodiesel production process," Applied Energy, Elsevier, vol. 88(10), pages 3454-3463.
- R. Alrefai & A.M. Alrefai & K.Y. Benyounis & J. Stokes, 2020. "An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes," Energies, MDPI, vol. 13(9), pages 1-24, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- R. Alrefai & A.M. Alrefai & K.Y. Benyounis & J. Stokes, 2020. "An Evaluation of the Effects of the Potato Starch on the Biogas Produced from the Anaerobic Digestion of Potato Wastes," Energies, MDPI, vol. 13(9), pages 1-24, May.
- Foteini Sakaveli & Maria Petala & Vasilios Tsiridis & Efthymios Darakas, 2024. "Enhancing Methane Yield in Anaerobic Co-Digestion of Primary Sewage Sludge: A Comprehensive Review on Potential Additives and Strategies," Waste, MDPI, vol. 2(1), pages 1-29, January.
- Yuan, Hao & Zhang, Xinru & Jiang, Zeyi & Wang, Xinyu & Wang, Yi & Cao, Limei & Zhang, Xinxin, 2020. "Effect of light spectra on microalgal biofilm: Cell growth, photosynthetic property, and main organic composition," Renewable Energy, Elsevier, vol. 157(C), pages 83-89.
- Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
- Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
- Ruth Chinyere Anyanwu & Cristina Rodriguez & Andy Durrant & Abdul Ghani Olabi, 2022. "Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods," Sustainability, MDPI, vol. 14(10), pages 1-13, May.
- Gao, Shumei & Hu, Changwei & Sun, Shiqing & Xu, Jie & Zhao, Yongjun & Zhang, Hui, 2018. "Performance of piggery wastewater treatment and biogas upgrading by three microalgal cultivation technologies under different initial COD concentration," Energy, Elsevier, vol. 165(PB), pages 360-369.
- Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
- Neves, Viviane T. de C. & Sales, Emerson Andrade & Perelo, Louisa W., 2016. "Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 160-165.
- Capson-Tojo, Gabriel & Torres, Alvaro & Muñoz, Raúl & Bartacek, Jan & Jeison, David, 2017. "Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production," Renewable Energy, Elsevier, vol. 105(C), pages 539-546.
- Shah, Fayyaz Ali & Mahmood, Qaisar & Rashid, Naim & Pervez, Arshid & Raja, Iftikhar Ahmad & Shah, Mohammad Maroof, 2015. "Co-digestion, pretreatment and digester design for enhanced methanogenesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 627-642.
- Ajayi-Banji, A.A. & Sunoj, S. & Igathinathane, C. & Rahman, S., 2021. "Kinetic studies of alkaline-pretreated corn stover co-digested with upset dairy manure under solid-state," Renewable Energy, Elsevier, vol. 163(C), pages 2198-2207.
- Giovanni Alessandro Cappelli & Fabrizio Ginaldi & Davide Fanchini & Sebastiano Andrea Corinzia & Salvatore Luciano Cosentino & Enrico Ceotto, 2021. "Model-Based Assessment of Giant Reed ( Arundo donax L.) Energy Yield in the Form of Diverse Biofuels in Marginal Areas of Italy," Land, MDPI, vol. 10(6), pages 1-24, May.
- Alvin B. Culaba & Aristotle T. Ubando & Phoebe Mae L. Ching & Wei-Hsin Chen & Jo-Shu Chang, 2020. "Biofuel from Microalgae: Sustainable Pathways," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
- Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
- Montingelli, M.E. & Benyounis, K.Y. & Quilty, B. & Stokes, J. & Olabi, A.G., 2017. "Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production," Energy, Elsevier, vol. 118(C), pages 1079-1089.
- Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
- Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
- Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
More about this item
Keywords
anaerobic digestion; mango waste; waste management; integration approach; response surface methodology;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6683-:d:464115. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.