IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6593-d461919.html
   My bibliography  Save this article

Assessment of Integration between Lactic Acid, Biogas and Hydrochar Production in OFMSW Plants

Author

Listed:
  • Lucio Zaccariello

    (Department DISTABIF, Università della Campania “L. Vanvitelli”, 81100 Caserta, Italy)

  • Maria Laura Mastellone

    (Department DISTABIF, Università della Campania “L. Vanvitelli”, 81100 Caserta, Italy)

  • Luisa Ida D’Amelia

    (Department of Engineering, Università della Campania “L. Vanvitelli”, 81031 Aversa, Italy)

  • Michelina Catauro

    (Department of Engineering, Università della Campania “L. Vanvitelli”, 81031 Aversa, Italy)

  • Biagio Morrone

    (Department of Engineering, Università della Campania “L. Vanvitelli”, 81031 Aversa, Italy)

Abstract

Biological treatments such as anaerobic digestion and composting are known to be the most widespread methods to deal with Organic Fraction of Municipal Solid Waste (OFMSW). The production of biogas, a mix of methane and carbon dioxide, is worth but alone cannot solve the problems of waste disposal and recovery; moreover, the digestate could be stabilized by aerobic stabilization, which is one of the most widespread methods. The anaerobic digestion + composting integration converts 10% to 14% of the OFMSW into biogas, about 35–40% into compost and 35–40% into leachate. The economic sustainability could be rather increased by integrating the whole system with lactic acid production, because of the high added value and by substituting the composting process with the hydrothermal carbonization process. The assessment of this integrated scenario in term of mass balance demonstrates that the recovery of useful products with a potentially high economic added value increases, at the same time reducing the waste streams outgoing the plant. The economic evaluation of the operating costs for the traditional and the alternative systems confirms that the integration is a valid alternative and the most interesting solution is the utilization of the leachate produced during the anaerobic digestion process instead of fresh water required for the hydrothermal carbonization process.

Suggested Citation

  • Lucio Zaccariello & Maria Laura Mastellone & Luisa Ida D’Amelia & Michelina Catauro & Biagio Morrone, 2020. "Assessment of Integration between Lactic Acid, Biogas and Hydrochar Production in OFMSW Plants," Energies, MDPI, vol. 13(24), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6593-:d:461919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michela Lucian & Luca Fiori, 2017. "Hydrothermal Carbonization of Waste Biomass: Process Design, Modeling, Energy Efficiency and Cost Analysis," Energies, MDPI, vol. 10(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biagio Morrone, 2022. "Residual Biomass Conversion to Bioenergy," Energies, MDPI, vol. 15(16), pages 1-3, August.
    2. Lucio Zaccariello & Maria Laura Mastellone, 2023. "Fuel Gas Production from the Co-Gasification of Coal, Plastic Waste, and Wood in a Fluidized Bed Reactor: Effect of Gasifying Agent and Bed Material," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    3. Long Zhang & Wuliyasu Bai & Jingzheng Ren, 2023. "Waste-to-Energy: A Midas Touch for Turning Waste into Energy," Energies, MDPI, vol. 16(5), pages 1-5, February.
    4. Montagnaro, Fabio & Zaccariello, Lucio, 2023. "Performance assessment of a demonstration-scale biomass gasification power plant using material and energy flow analyses," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    2. Sooraj Kumar & Suhail Ahmed Soomro & Khanji Harijan & Mohammad Aslam Uqaili & Laveet Kumar, 2023. "Advancements of Biochar-Based Catalyst for Improved Production of Biodiesel: A Comprehensive Review," Energies, MDPI, vol. 16(2), pages 1-20, January.
    3. Pietro Romano & Nicola Stampone & Gabriele Di Giacomo, 2023. "Evolution and Prospects of Hydrothermal Carbonization," Energies, MDPI, vol. 16(7), pages 1-11, March.
    4. Chen, Lichun & Wen, Chang & Wang, Wenyu & Liu, Tianyu & Liu, Enze & Liu, Haowen & Li, Zexin, 2020. "Combustion behaviour of biochars thermally pretreated via torrefaction, slow pyrolysis, or hydrothermal carbonisation and co-fired with pulverised coal," Renewable Energy, Elsevier, vol. 161(C), pages 867-877.
    5. Daniel Reißmann & Daniela Thrän & Alberto Bezama, 2018. "Key Development Factors of Hydrothermal Processes in Germany by 2030: A Fuzzy Logic Analysis," Energies, MDPI, vol. 11(12), pages 1-20, December.
    6. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    7. Dhananjay Bhatt & Ankita Shrestha & Raj Kumar Dahal & Bishnu Acharya & Prabir Basu & Richard MacEwen, 2018. "Hydrothermal Carbonization of Biosolids from Waste Water Treatment Plant," Energies, MDPI, vol. 11(9), pages 1-10, August.
    8. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    9. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    10. Heiner Brookman & Fabian Gievers & Volker Zelinski & Jan Ohlert & Achim Loewen, 2018. "Influence of Hydrothermal Carbonization on Composition, Formation and Elimination of Biphenyls, Dioxins and Furans in Sewage Sludge," Energies, MDPI, vol. 11(6), pages 1-13, June.
    11. Pagés-Díaz, Jhosané & Cerda Alvarado, Andrés Osvaldo & Montalvo, Silvio & Diaz-Robles, Luis & Curio, César Huiliñir, 2020. "Anaerobic bio-methane potential of the liquors from hydrothermal carbonization of different lignocellulose biomasses," Renewable Energy, Elsevier, vol. 157(C), pages 182-189.
    12. Aragon-Briceño, Christian & Pożarlik, Artur & Bramer, Eddy & Brem, Gerrit & Wang, Shule & Wen, Yuming & Yang, Weihong & Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Urbanowska, Agnieszka & Mościcki,, 2022. "Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate," Renewable Energy, Elsevier, vol. 184(C), pages 577-591.
    13. Yuxiang Yao & Chandhini Ramu & Allison Procher & Jennifer Littlejohns & Josephine M. Hill & James W. Butler, 2023. "Potential for Thermo-Chemical Conversion of Solid Waste in Canada to Fuel, Heat, and Electricity," Waste, MDPI, vol. 1(3), pages 1-22, August.
    14. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    15. Conceição de Maria Sales da Silva & Douglas Alberto Rocha de Castro & Marcelo Costa Santos & Hélio da Silva Almeida & Maja Schultze & Ulf Lüder & Thomas Hoffmann & Nélio Teixeira Machado, 2021. "Process Analysis of Main Organic Compounds Dissolved in Aqueous Phase by Hydrothermal Processing of Açaí ( Euterpe oleraceae , Mart.) Seeds: Influence of Process Temperature, Biomass-to-Water Ratio, a," Energies, MDPI, vol. 14(18), pages 1-24, September.
    16. Isaac Lorero & Arturo J. Vizcaíno & Francisco J. Alguacil & Félix A. López, 2020. "Activated Carbon from Winemaking Waste: Thermoeconomic Analysis for Large-Scale Production," Energies, MDPI, vol. 13(23), pages 1-22, December.
    17. Michela Lucian & Maurizio Volpe & Luca Fiori, 2019. "Hydrothermal Carbonization Kinetics of Lignocellulosic Agro-Wastes: Experimental Data and Modeling," Energies, MDPI, vol. 12(3), pages 1-20, February.
    18. Alessandro Antonio Papa & Andrea Di Carlo & Enrico Bocci & Luca Taglieri & Luca Del Zotto & Alberto Gallifuoco, 2021. "Energy Analysis of an Integrated Plant: Fluidized Bed Steam Gasification of Hydrothermally Treated Biomass Coupled to Solid Oxide Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-13, November.
    19. Ramos, João S. & Ferreira, Ana F., 2022. "Techno-economic analysis and life cycle assessment of olive and wine industry co-products valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Zhiyu Li & Weiming Yi & Zhihe Li & Chunyan Tian & Peng Fu & Yuchun Zhang & Ling Zhou & Jie Teng, 2020. "Preparation of Solid Fuel Hydrochar over Hydrothermal Carbonization of Red Jujube Branch," Energies, MDPI, vol. 13(2), pages 1-10, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6593-:d:461919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.