IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6524-d459932.html
   My bibliography  Save this article

Validation of the Stolwijk and Tanabe Human Thermoregulation Models for Predicting Local Skin Temperatures of Older People under Thermal Transient Conditions

Author

Listed:
  • Yin Tang

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

  • Hang Yu

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China
    Key Laboratory of Ecology and Energy Saving Study of Dense Habitat (Tongji University), Ministry of Education, Shanghai 201804, China)

  • Zi Wang

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China
    Research Center for Buildings, VANKE Co., Ltd., Shenzhen 518033, China)

  • Maohui Luo

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

  • Chaoen Li

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

Abstract

Human thermoregulation models can predict human thermal responses to evaluate thermal comfort and help create a healthy environment, while their applicability to older people has not been sufficiently validated. This study aimed to evaluate the performance of the Stolwijk model and the Tanabe model for predicting older people’s mean and local skin temperatures under thermal transient conditions. Eighteen healthy older people were recruited and exposed to transient environments including neutral (26 °C), low-temperature (23 and 21 °C), and high-temperature (29 and 32 °C) conditions. The local skin temperatures of the subjects were measured and compared to predictions of the Stolwijk model and the Tanabe model. The results revealed that the Stolwijk model and the Tanabe model could accurately predict the mean skin temperature of older people under neutral and high-temperature conditions, while their predictive accuracy declined under low-temperature conditions. Increased deviations were observed in the predictions of local skin temperatures for all conditions. This work attempted to provide an understanding of older people’s thermal response characteristics under transient conditions and to inspire the improvement of thermoregulation models for older people.

Suggested Citation

  • Yin Tang & Hang Yu & Zi Wang & Maohui Luo & Chaoen Li, 2020. "Validation of the Stolwijk and Tanabe Human Thermoregulation Models for Predicting Local Skin Temperatures of Older People under Thermal Transient Conditions," Energies, MDPI, vol. 13(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6524-:d:459932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diana Enescu, 2019. "Models and Indicators to Assess Thermal Sensation Under Steady-State and Transient Conditions," Energies, MDPI, vol. 12(5), pages 1-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eusébio Conceição & Hazim Awbi, 2021. "Evaluation of Integral Effect of Thermal Comfort, Air Quality and Draught Risk for Desks Equipped with Personalized Ventilation Systems," Energies, MDPI, vol. 14(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Youssef & Nicolás Caballero & Jean Marie Aerts, 2019. "Dynamic Model-Based Monitoring of Human Thermal Comfort for Real-Time and Adaptive Control Applications," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 19(4), pages 14526-14532, July.
    2. Herie Park, 2020. "Human Comfort-Based-Home Energy Management for Demand Response Participation," Energies, MDPI, vol. 13(10), pages 1-15, May.
    3. Grzegorz Majewski & Łukasz J. Orman & Marek Telejko & Norbert Radek & Jacek Pietraszek & Agata Dudek, 2020. "Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment," Energies, MDPI, vol. 13(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6524-:d:459932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.