IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6518-d459819.html
   My bibliography  Save this article

Comparative Study of Tetra-N-Butyl Ammonium Bromide and Cyclopentane on the Methane Hydrate Formation and Dissociation

Author

Listed:
  • Warintip Chanakro

    (The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand)

  • Chutikan Jaikwang

    (The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand)

  • Katipot Inkong

    (The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand)

  • Santi Kulprathipanja

    (Honeywell UOP, Des Plaines, IL 60017, USA)

  • Pramoch Rangsunvigit

    (The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
    Center of Excellence in Petrochemical Materials Technology (PETROMAT), Research Building, Chulalongkorn University, Bangkok 10330, Thailand)

Abstract

Two widely investigated methane hydrate promoters, tetra-n-butyl ammonium bromide (TBAB) and cyclopentane (CP), for methane hydrate formation and dissociation were comparatively investigated in the quiescent reactor at 2.5 °C and 8 MPa. The results indicated that the increase in the mass fraction TBAB decreased the induction time. However, it did not significantly affect the methane uptake. In the presence of CP, the increase in the CP concentration resulted in an increase in the induction time due to the increasing thicknesses of the CP layer in the unstirred reactor. Moreover, the methane uptake was varied proportionally with the CP concentration. The addition of TBAB resulted in a higher methane uptake than that of CP, since the presence of TBAB provided the cavities in the hydrate structure to accommodate the methane gas during the hydrate formation better than that of CP. On the contrary, the presence of CP significantly increased the induction time. Although the methane recovery remained relatively the same regardless of TBAB and CP concentrations, the recovery was higher in the presence of TBAB.

Suggested Citation

  • Warintip Chanakro & Chutikan Jaikwang & Katipot Inkong & Santi Kulprathipanja & Pramoch Rangsunvigit, 2020. "Comparative Study of Tetra-N-Butyl Ammonium Bromide and Cyclopentane on the Methane Hydrate Formation and Dissociation," Energies, MDPI, vol. 13(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6518-:d:459819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ho, Leong Chuan & Babu, Ponnivalavan & Kumar, Rajnish & Linga, Praveen, 2013. "HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane," Energy, Elsevier, vol. 63(C), pages 252-259.
    2. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Bamaga & Iqbal Ahmed & Asim M. Wafiyah & Mohammed Albeirutty & Hani Abulkhair & Amer Shaiban & Praveen Linga, 2022. "Studies on Methane Gas Hydrate Formation Kinetics Enhanced by Isopentane and Sodium Dodecyl Sulfate Promoters for Seawater Desalination," Energies, MDPI, vol. 15(24), pages 1-16, December.
    2. Zhang, Xuemin & Liu, Qingqing & He, Jiajin & Yuan, Qing & Li, Jinping & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2024. "Research progress of incremental synthesis and enhancement mechanism of natural gas hydrates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    2. Remi-Erempagamo Tariyemienyo Meindinyo & Thor Martin Svartaas, 2016. "Gas Hydrate Growth Kinetics: A Parametric Study," Energies, MDPI, vol. 9(12), pages 1-29, December.
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    5. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    6. Sanya Du & Yixin Qu & Hui Li & Xiaohui Yu, 2022. "Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation," Energies, MDPI, vol. 15(12), pages 1-14, June.
    7. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    8. Lei Wang & Jin Yang & Lilin Li & Ting Sun & Dongsheng Xu, 2022. "Study on the Mechanical Properties of Natural Gas Hydrate Reservoirs with Multicomponent under Different Engineering Conditions," Energies, MDPI, vol. 15(23), pages 1-23, November.
    9. Sun, Ningru & Zhang, Ye & Bhattacharjee, Gaurav & Li, Yanjun & Qiu, Nianxiang & Du, Shiyu & Linga, Praveen, 2024. "Seawater-based sII hydrate formation promoted by 1,3-Dioxolane for energy storage," Energy, Elsevier, vol. 286(C).
    10. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
    11. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    12. Pagar, Eti & Burla, Sai Kiran & Kumar, Vimal & Veluswamy, Hari Prakash, 2024. "Influence of amino acids on gas hydrate formation and dissociation kinetics using flue gas (CO2 + N2 mixture) in silica sand under saline/non-saline conditions for CO2 sequestration," Applied Energy, Elsevier, vol. 367(C).
    13. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
    14. Xie, Yan & Zheng, Tao & Zhong, Jin-Rong & Zhu, Yu-Jie & Wang, Yun-Fei & Zhang, Yu & Li, Rui & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Experimental research on self-preservation effect of methane hydrate in porous sediments," Applied Energy, Elsevier, vol. 268(C).
    15. Zhang, Xuemin & Liu, Qingqing & He, Jiajin & Yuan, Qing & Li, Jinping & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2024. "Research progress of incremental synthesis and enhancement mechanism of natural gas hydrates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    16. Ren, Liang-Liang & Qi, Ya-Hui & Chen, Jun-Li & Sun, Yi-Fei & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Yuan, Qing & Pang, Wei-Xin & Li, Qing-Ping, 2020. "Dependence of acoustic properties on hydrate-bearing sediments with heterogeneous distribution," Applied Energy, Elsevier, vol. 275(C).
    17. Nail G. Musakaev & Marat K. Khasanov, 2020. "Solution of the Problem of Natural Gas Storages Creating in Gas Hydrate State in Porous Reservoirs," Mathematics, MDPI, vol. 8(1), pages 1-14, January.
    18. Yu, Yi-Song & Zhang, Qing-Zong & Li, Xiao-Sen & Chen, Chang & Zhou, Shi-Dong, 2020. "Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane," Applied Energy, Elsevier, vol. 265(C).
    19. Jyoti Shanker Pandey & Saad Khan & Nicolas von Solms, 2022. "Screening of Low-Dosage Methanol as a Hydrate Promoter," Energies, MDPI, vol. 15(18), pages 1-20, September.
    20. Lu, Yi-Yu & Ge, Bin-Bin & Zhong, Dong-Liang, 2020. "Investigation of using graphite nanofluids to promote methane hydrate formation: Application to solidified natural gas storage," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6518-:d:459819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.