IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6468-d458207.html
   My bibliography  Save this article

Assessment of the Impact of Occupants’ Behavior and Climate Change on Heating and Cooling Energy Needs of Buildings

Author

Listed:
  • Gianmarco Fajilla

    (Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy
    Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal)

  • Marilena De Simone

    (Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy)

  • Luisa F. Cabeza

    (GREiA Research Group, Universitat de Lleida, 25001 Lleida, Spain)

  • Luís Bragança

    (Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal)

Abstract

Energy performance of buildings is a worldwide increasing investigated field, due to ever more stringent energy standards aimed at reducing the buildings’ impact on the environment. The purpose of this paper is to assess the impact that occupant behavior and climate change have on the heating and cooling needs of residential buildings. With this aim, data of a questionnaire survey delivered in Southern Italy were used to obtain daily use profiles of natural ventilation, heating, and cooling, both in winter and in summer. Three climatic scenarios were investigated: The current scenario (2020), and two future scenarios (2050 and 2080). The CCWorldWeatherGen tool was used to create the weather files of future climate scenarios, and DesignBuilder was applied to conduct dynamic energy simulations. Firstly, the results obtained for 2020 demonstrated how the occupants’ preferences related to the use of natural ventilation, heating, and cooling systems (daily schedules and temperature setpoints) impact on energy needs. Heating energy needs appeared more affected by the heating schedules, while cooling energy needs were mostly influenced by both natural ventilation and usage schedules. Secondly, due to the temperature rise, substantial decrements of the energy needs for heating and increments of cooling energy needs were observed in all the future scenarios where in addition, the impact of occupant behavior appeared amplified.

Suggested Citation

  • Gianmarco Fajilla & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2020. "Assessment of the Impact of Occupants’ Behavior and Climate Change on Heating and Cooling Energy Needs of Buildings," Energies, MDPI, vol. 13(23), pages 1-18, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6468-:d:458207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ashouri, Milad & Fung, Benjamin C.M. & Haghighat, Fariborz & Yoshino, Hiroshi, 2020. "Systematic approach to provide building occupants with feedback to reduce energy consumption," Energy, Elsevier, vol. 194(C).
    2. Roetzel, Astrid & Tsangrassoulis, Aris & Dietrich, Udo & Busching, Sabine, 2010. "A review of occupant control on natural ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1001-1013, April.
    3. Luisa F. Cabeza & Marta Chàfer & Érika Mata, 2020. "Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings," Energies, MDPI, vol. 13(2), pages 1-24, January.
    4. Araújo, Catarina & Almeida, Manuela & Bragança, Luís & Barbosa, José Amarilio, 2016. "Cost–benefit analysis method for building solutions," Applied Energy, Elsevier, vol. 173(C), pages 124-133.
    5. Gaetani, Isabella & Hoes, Pieter-Jan & Hensen, Jan L.M., 2018. "Estimating the influence of occupant behavior on building heating and cooling energy in one simulation run," Applied Energy, Elsevier, vol. 223(C), pages 159-171.
    6. Berardi, Umberto & Jafarpur, Pouriya, 2020. "Assessing the impact of climate change on building heating and cooling energy demand in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Virgilio Ciancio & Serena Falasca & Iacopo Golasi & Pieter de Wilde & Massimo Coppi & Livio de Santoli & Ferdinando Salata, 2019. "Resilience of a Building to Future Climate Conditions in Three European Cities," Energies, MDPI, vol. 12(23), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariola E. Zalewska, 2021. "The Impact of Incentives on Employees to Change Thermostat Settings—A Field Study," Energies, MDPI, vol. 14(17), pages 1-14, August.
    2. Gianmarco Fajilla & Emiliano Borri & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2021. "Effect of Climate Change and Occupant Behaviour on the Environmental Impact of the Heating and Cooling Systems of a Real Apartment. A Parametric Study through Life Cycle Assessment," Energies, MDPI, vol. 14(24), pages 1-21, December.
    3. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianmarco Fajilla & Emiliano Borri & Marilena De Simone & Luisa F. Cabeza & Luís Bragança, 2021. "Effect of Climate Change and Occupant Behaviour on the Environmental Impact of the Heating and Cooling Systems of a Real Apartment. A Parametric Study through Life Cycle Assessment," Energies, MDPI, vol. 14(24), pages 1-21, December.
    2. Rosa Francesca De Masi & Valentino Festa & Antonio Gigante & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    3. David Vérez & Luisa F. Cabeza, 2021. "Which Building Services Are Considered to Have Impact on Climate Change?," Energies, MDPI, vol. 14(13), pages 1-16, June.
    4. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Wirapong Chansanam & Chunqiu Li, 2022. "Scientometrics of Poverty Research for Sustainability Development: Trend Analysis of the 1964–2022 Data through Scopus," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    6. Michele Roccotelli & Alessandro Rinaldi & Maria Pia Fanti & Francesco Iannone, 2020. "Building Energy Management for Passive Cooling Based on Stochastic Occupants Behavior Evaluation," Energies, MDPI, vol. 14(1), pages 1-24, December.
    7. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    8. Sánchez, M.N. & Soutullo, S. & Olmedo, R. & Bravo, D. & Castaño, S. & Jiménez, M.J., 2020. "An experimental methodology to assess the climate impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas," Applied Energy, Elsevier, vol. 264(C).
    9. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    10. Mohsen Ahmadi & Mahsa Soofiabadi & Maryam Nikpour & Hossein Naderi & Lazim Abdullah & Behdad Arandian, 2022. "Developing a Deep Neural Network with Fuzzy Wavelets and Integrating an Inline PSO to Predict Energy Consumption Patterns in Urban Buildings," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    11. Jihye Ryu & Jungsoo Kim, 2021. "Effect of Different HVAC Control Strategies on Thermal Comfort and Adaptive Behavior in High-Rise Apartments," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    12. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    13. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    14. Zhu, Xu & Zhang, Shuai & Jin, Xinqiao & Du, Zhimin, 2020. "Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency," Energy, Elsevier, vol. 213(C).
    15. Lee, Junsoo & Kim, Tae Wan & Koo, Choongwan, 2022. "A novel process model for developing a scalable room-level energy benchmark using real-time bigdata: Focused on identifying representative energy usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Dongdong Zhang & Cunhao Rong & Hui Hwang Goh & Hui Liu & Xiang Li & Hongyu Zhu & Thomas Wu, 2023. "Reform of Electrical Engineering Undergraduate Teaching and the Curriculum System in the Context of the Energy Internet," Sustainability, MDPI, vol. 15(6), pages 1-37, March.
    17. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    18. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    19. Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
    20. Bragolusi, Paolo & D'Alpaos, Chiara, 2022. "The valuation of buildings energy retrofitting: A multiple-criteria approach to reconcile cost-benefit trade-offs and energy savings," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6468-:d:458207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.