IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6017-d446819.html
   My bibliography  Save this article

Improving the Quality of Electricity in Installations with Mixed Lighting Fittings

Author

Listed:
  • Tomasz Popławski

    (Department of Electrical Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

  • Marek Kurkowski

    (Department of Electrical Engineering, Czestochowa University of Technology, 42-201 Czestochowa, Poland)

  • Jarosław Mirowski

    (Energo-Bud Sp. Z o.o., 44-196 Knurów, Poland)

Abstract

The issues that are presented in the article concern the broadly understood parameters of the operation of lighting fixtures in mixed systems and the improvement of the quality of electricity, considered in two aspects: as receivers of the energy consumed, determining and generating reactive power, influencing the asymmetry of currents and the production of higher harmonics, determined by the parameters of current and supply voltage (independent of the consumers connected at the connection point), which are influenced by the consumers that are connected at the connection point. After the tests, in order to improve the quality of energy, a proprietary program for the design of passive resonance filters was developed. A wide range of measurements of various types of lighting devices was carried out in single, complex, and mixed systems. Luminaires with discharge and LED sources were selected for the analysis of energy parameters. The tests were carried out in accordance with the IEEE 1459-2010 standard for single-phase circuits with distorted waveforms.

Suggested Citation

  • Tomasz Popławski & Marek Kurkowski & Jarosław Mirowski, 2020. "Improving the Quality of Electricity in Installations with Mixed Lighting Fittings," Energies, MDPI, vol. 13(22), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6017-:d:446819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    2. Yanxue Yu & Haoyu Li & Zhenwei Li & Zhou Zhao, 2017. "Modeling and Analysis of Resonance in LCL-Type Grid-Connected Inverters under Different Control Schemes," Energies, MDPI, vol. 10(1), pages 1-17, January.
    3. Jufri, Fauzan Hanif & Oh, Seongmun & Jung, Jaesung, 2019. "Development of Photovoltaic abnormal condition detection system using combined regression and Support Vector Machine," Energy, Elsevier, vol. 176(C), pages 457-467.
    4. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Mather, Peter, 2017. "Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system," Energy, Elsevier, vol. 140(P1), pages 276-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Popławski & Marek Kurkowski, 2023. "Nonlinear Loads in Lighting Installations—Problems and Threats," Energies, MDPI, vol. 16(16), pages 1-15, August.
    2. Marek Kurkowski & Tomasz Popławski & Maciej Zajkowski & Bartosz Kurkowski & Michał Szota, 2022. "Effective Control of Road Luminaires—A Case Study on an Example of a Selected City in Poland," Energies, MDPI, vol. 15(15), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meenakshi Jayaraman & Sreedevi VT, 2017. "Power Quality Improvement in a Cascaded Multilevel Inverter Interfaced Grid Connected System Using a Modified Inductive–Capacitive–Inductive Filter with Reduced Power Loss and Improved Harmonic Attenu," Energies, MDPI, vol. 10(11), pages 1-23, November.
    2. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Kapucu, Ceyhun & Cubukcu, Mete, 2021. "A supervised ensemble learning method for fault diagnosis in photovoltaic strings," Energy, Elsevier, vol. 227(C).
    4. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    5. Zhao, Shuchun & Guo, Junheng & Dang, Xiuhu & Ai, Bingyan & Zhang, Minqing & Li, Wei & Zhang, Jinli, 2022. "Energy consumption, flow characteristics and energy-efficient design of cup-shape blade stirred tank reactors: Computational fluid dynamics and artificial neural network investigation," Energy, Elsevier, vol. 240(C).
    6. Min Huang & Han Li & Weimin Wu & Frede Blaabjerg, 2019. "Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs," Energies, MDPI, vol. 12(8), pages 1-15, April.
    7. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    8. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    9. Pedro H. S. Calderano & de Castro Ribeiro Mateus Gheorghe & Rodolfo S. Teixeira & Renan P. Finotti Amaral & Ivan F. M. Menezes, 2023. "Type-1 and singleton fuzzy logic system binary classifier trained by BFGS optimization method," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 149-168, March.
    10. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    11. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    12. Gabriel Nasser Doyle de Doile & Paulo Rotella Junior & Luiz Célio Souza Rocha & Ivan Bolis & Karel Janda & Luiz Moreira Coelho Junior, 2021. "Hybrid Wind and Solar Photovoltaic Generation with Energy Storage Systems: A Systematic Literature Review and Contributions to Technical and Economic Regulations," Energies, MDPI, vol. 14(20), pages 1-22, October.
    13. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    14. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    15. Bouabdallah, A. & Olivier, J.C. & Bourguet, S. & Machmoum, M. & Schaeffer, E., 2015. "Safe sizing methodology applied to a standalone photovoltaic system," Renewable Energy, Elsevier, vol. 80(C), pages 266-274.
    16. Sharma, Rakesh & Dutta, Pradip & Murthy, S.Srinivasa, 2024. "Application of hydrogen storage in polygeneration microgrids: Case study of wind microgrid in India," Energy, Elsevier, vol. 311(C).
    17. Nfah, Eustace Mbaka, 2013. "Evaluation of optimal photovoltaic hybrid systems for remote villages in Far North Cameroon," Renewable Energy, Elsevier, vol. 51(C), pages 482-488.
    18. Jahangiri, Mehdi & Ghaderi, Reza & Haghani, Ahmad & Nematollahi, Omid, 2016. "Finding the best locations for establishment of solar-wind power stations in Middle-East using GIS: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 38-52.
    19. Jiefeng Hu, 2017. "Predictive Direct Flux Control—A New Control Method of Voltage Source Inverters in Distributed Generation Applications," Energies, MDPI, vol. 10(4), pages 1-11, March.
    20. Han, Seulki & Won, Wangyun & Kim, Jiyong, 2017. "Scenario-based approach for design and comparatively analysis of conventional and renewable energy systems," Energy, Elsevier, vol. 129(C), pages 86-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6017-:d:446819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.