Derivation and Uncertainty Quantification of a Data-Driven Subcooled Boiling Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- P. Baldi & P. Sadowski & D. Whiteson, 2014. "Searching for exotic particles in high-energy physics with deep learning," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Da Liu & Ming Xu & Dongxiao Niu & Shoukai Wang & Sai Liang, 2016. "Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-9, June.
- Wang, Jia & Hu, Jun & Shen, Shifei & Zhuang, Jun & Ni, Shunjiang, 2020. "Crime risk analysis through big data algorithm with urban metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
- Pessa, Arthur A.B. & Zola, Rafael S. & Perc, Matjaž & Ribeiro, Haroldo V., 2022. "Determining liquid crystal properties with ordinal networks and machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Ángel Luis Muñoz Castañeda & Noemí DeCastro-García & David Escudero García, 2021. "RHOASo: An Early Stop Hyper-Parameter Optimization Algorithm," Mathematics, MDPI, vol. 9(18), pages 1-52, September.
- Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Segarra-Tamarit, Jorge & Pérez, Emilio & Moya, Eric & Ayuso, Pablo & Beltran, Hector, 2021. "Deep learning-based forecasting of aggregated CSP production," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 306-318.
More about this item
Keywords
computational fluid dynamics (CFD); artificial neural network (ANN); subcooled boiling flows; uncertainty quantification (UQ); Monte Carlo dropout; deep ensemble; deep neural network (DNN);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5987-:d:445980. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.