IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5308.html
   My bibliography  Save this article

Searching for exotic particles in high-energy physics with deep learning

Author

Listed:
  • P. Baldi

    (UC Irvine)

  • P. Sadowski

    (UC Irvine)

  • D. Whiteson

    (UC Irvine)

Abstract

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle discoveries. Finding these rare particles requires solving difficult signal-versus-background classification problems, hence machine-learning approaches are often used. Standard approaches have relied on ‘shallow’ machine-learning models that have a limited capacity to learn complex nonlinear functions of the inputs, and rely on a painstaking search through manually constructed nonlinear features. Progress on this problem has slowed, as a variety of techniques have shown equivalent performance. Recent advances in the field of deep learning make it possible to learn more complex functions and better discriminate between signal and background classes. Here, using benchmark data sets, we show that deep-learning methods need no manually constructed inputs and yet improve the classification metric by as much as 8% over the best current approaches. This demonstrates that deep-learning approaches can improve the power of collider searches for exotic particles.

Suggested Citation

  • P. Baldi & P. Sadowski & D. Whiteson, 2014. "Searching for exotic particles in high-energy physics with deep learning," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5308
    DOI: 10.1038/ncomms5308
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5308
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenjia Chen & Zhenyuan Lin & Ji Yang & Cong Chen & Di Liu & Liuting Shan & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Chicchi, Lorenzo & Giambagli, Lorenzo & Buffoni, Lorenzo & Marino, Raffaele & Fanelli, Duccio, 2024. "Complex Recurrent Spectral Network," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    3. Segarra-Tamarit, Jorge & Pérez, Emilio & Moya, Eric & Ayuso, Pablo & Beltran, Hector, 2021. "Deep learning-based forecasting of aggregated CSP production," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 306-318.
    4. Dang, Khue-Dung & Quiroz, Matias & Kohn, Robert & Tran, Minh-Ngoc & Villani, Mattias, 2019. "Hamiltonian Monte Carlo with Energy Conserving Subsampling," Working Paper Series 372, Sveriges Riksbank (Central Bank of Sweden).
    5. Jerol Soibam & Achref Rabhi & Ioanna Aslanidou & Konstantinos Kyprianidis & Rebei Bel Fdhila, 2020. "Derivation and Uncertainty Quantification of a Data-Driven Subcooled Boiling Model," Energies, MDPI, vol. 13(22), pages 1-30, November.
    6. Ángel Luis Muñoz Castañeda & Noemí DeCastro-García & David Escudero García, 2021. "RHOASo: An Early Stop Hyper-Parameter Optimization Algorithm," Mathematics, MDPI, vol. 9(18), pages 1-52, September.
    7. Wang, Jia & Hu, Jun & Shen, Shifei & Zhuang, Jun & Ni, Shunjiang, 2020. "Crime risk analysis through big data algorithm with urban metrics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Pessa, Arthur A.B. & Zola, Rafael S. & Perc, Matjaž & Ribeiro, Haroldo V., 2022. "Determining liquid crystal properties with ordinal networks and machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Da Liu & Ming Xu & Dongxiao Niu & Shoukai Wang & Sai Liang, 2016. "Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-9, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.