IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5952-d445166.html
   My bibliography  Save this article

Pressure Performance of Highly Deviated Well in Low Permeability Carbonate Gas Reservoir Using a Composite Model

Author

Listed:
  • Qinwen Zhang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    CNPC Chuanqing Drilling Engineering Company Limited, Chengdu 610500, China)

  • Liehui Zhang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Qiguo Liu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Youshi Jiang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

Abstract

It is commonly believed that matrix and natural fractures randomly distribute in carbonate gas reservoirs. In order to increase the effective connected area to the storage space as much as possible, highly deviated wells are widely used for development. Although there have been some studies on the composite model for highly deviated wells, they have not considered the effects of stress sensitivity and threshold pressure gradient in a dual-porosity gas reservoir. In this paper, a semi-analytical composite model for low permeability carbonate gas reservoir was established to study the effect of non-Darcy flow. By employing source function, Fourier transform and the perturbation method, the pressure performance and typical well test curves were obtained. Eight flow regimes were identified, and their characteristics were discussed. As a result, it can be concluded that the effects of stress sensitivity and threshold pressure gradient would make pseudo-pressure and derivative curves rise, which is the characteristic of non-Darcy flow to determine whether there is stress sensitivity or threshold pressure gradient.

Suggested Citation

  • Qinwen Zhang & Liehui Zhang & Qiguo Liu & Youshi Jiang, 2020. "Pressure Performance of Highly Deviated Well in Low Permeability Carbonate Gas Reservoir Using a Composite Model," Energies, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5952-:d:445166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5952/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5952/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Yang & Zhihui Liu & Zhixue Sun & Senyou An & Wenjie Zhang & Pengfei Liu & Jun Yao & Jingsheng Ma, 2017. "Research on Stress Sensitivity of Fractured Carbonate Reservoirs Based on CT Technology," Energies, MDPI, vol. 10(11), pages 1-15, November.
    2. Kongjie Wang & Lian Wang & Caspar Daniel Adenutsi & Zhiping Li & Sen Yang & Liang Zhang & Lan Wang, 2019. "Analysis of Gas Flow Behavior for Highly Deviated Wells in Naturally Fractured-Vuggy Carbonate Gas Reservoirs," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyuan Li & Qi Zhang & Keying Wei & Yuan Zeng & Yushuang Zhu, 2022. "Well Test Analysis of Inclined Wells in the Low-Permeability Composite Gas Reservoir Considering the Non-Darcy Flow," Energies, MDPI, vol. 15(5), pages 1-16, February.
    2. Mao Li & Zhan Qu & Songfeng Ji & Lei Bai & Shasha Yang, 2023. "A New Methodology for Determination of Layered Injection Allocation in Highly Deviated Wells Drilled in Low-Permeability Reservoirs," Energies, MDPI, vol. 16(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin J. Hodder & Angel J. Sanchez-Barra & Sergey Ishutov & Gonzalo Zambrano-Narvaez & Rick J. Chalaturnyk, 2022. "Increasing Density of 3D-Printed Sandstone through Compaction," Energies, MDPI, vol. 15(5), pages 1-15, March.
    2. Wanniarachchige Gnamani Pabasara Kumari & Pathegama Gamage Ranjith, 2022. "Experimental and Numerical Investigation of the Flow Behaviour of Fractured Granite under Extreme Temperature and Pressure Conditions," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    3. Ali Shafiei & Maurice B. Dusseault & Ehsan Kosari & Morteza N. Taleghani, 2018. "Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach," Energies, MDPI, vol. 11(2), pages 1-26, February.
    4. Yongfei Yang & Zhihui Liu & Jun Yao & Lei Zhang & Jingsheng Ma & S. Hossein Hejazi & Linda Luquot & Toussaint Dono Ngarta, 2018. "Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods," Energies, MDPI, vol. 11(8), pages 1-17, August.
    5. Liming Zhang & Zekun Deng & Kai Zhang & Tao Long & Joshua Kwesi Desbordes & Hai Sun & Yongfei Yang, 2019. "Well-Placement Optimization in an Enhanced Geothermal System Based on the Fracture Continuum Method and 0-1 Programming," Energies, MDPI, vol. 12(4), pages 1-20, February.
    6. Evgenii Vasilevich Kozhevnikov & Mikhail Sergeevich Turbakov & Evgenii Pavlovich Riabokon & Vladimir Valerevich Poplygin, 2021. "Effect of Effective Pressure on the Permeability of Rocks Based on Well Testing Results," Energies, MDPI, vol. 14(8), pages 1-20, April.
    7. Mao Li & Zhan Qu & Songfeng Ji & Lei Bai & Shasha Yang, 2023. "A New Methodology for Determination of Layered Injection Allocation in Highly Deviated Wells Drilled in Low-Permeability Reservoirs," Energies, MDPI, vol. 16(23), pages 1-24, November.
    8. Yi Feng & Gao Li & Yingfeng Meng & Boyun Guo, 2018. "A Novel Approach to Investigating Transport of Lost Circulation Materials in Rough Fracture," Energies, MDPI, vol. 11(10), pages 1-19, September.
    9. Haiyuan Yang & Li Zhang & Ronghe Liu & Xianli Wen & Yongfei Yang & Lei Zhang & Kai Zhang & Roohollah Askari, 2019. "Thermal Conduction Simulation Based on Reconstructed Digital Rocks with Respect to Fractures," Energies, MDPI, vol. 12(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5952-:d:445166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.