IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5756-d439317.html
   My bibliography  Save this article

Robust Decentralized Tracking Voltage Control for Islanded Microgrids by Invariant Ellipsoids

Author

Listed:
  • Hisham M. Soliman

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, Muscat 123, Oman)

  • Ehab Bayoumi

    (Department of Electrical and Electronics Engineering, University of Eswatini, Private Bag 4, Kwaluseni M201, Swaziland)

  • Amer Al-Hinai

    (Department of Electrical and Computer Engineering, Sultan Qaboos University, Muscat 123, Oman)

  • Mostafa Soliman

    (Department of Computer Engineering, Cairo University, Cairo 12613, Egypt)

Abstract

This manuscript presents a robust tracking (servomechanism) controller for linear time-invariant (LTI) islanded (autonomous, isolated) microgrid voltage control. The studied microgrid (MG) consists of many distributed energy resources (DERs) units, each using a voltage-sourced converter (VSC) for the interface. The optimal tracker design uses the ellipsoidal approximation to the invariant sets. The MG system is decomposed into different subsystems (DERs). Each subsystem is affected by the rest of the system that is considered as a disturbance to be rejected by the controller. The proposed tracker (state feedback integral control) rejects bounded external disturbances by minimizing the invariant ellipsoids of the MG dynamics. A condition to design decentralized controllers is derived in the form of linear matrix inequalities. The proposed controller is characterized by rapid transient response, and zero error in the steady state. A robustness analysis of the control strategy (against load changes, load unbalances, etc.) is carried out. A MATLAB/SimPowerSystems (R2017b, MathWorks, Natick, MA, USA) simulation of the case study confirm the robustness of the proposed controller.

Suggested Citation

  • Hisham M. Soliman & Ehab Bayoumi & Amer Al-Hinai & Mostafa Soliman, 2020. "Robust Decentralized Tracking Voltage Control for Islanded Microgrids by Invariant Ellipsoids," Energies, MDPI, vol. 13(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5756-:d:439317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5756/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5756/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    2. Demin Li & Bo Zhao & Zaijun Wu & Xuesong Zhang & Leiqi Zhang, 2017. "An Improved Droop Control Strategy for Low-Voltage Microgrids Based on Distributed Secondary Power Optimization Control," Energies, MDPI, vol. 10(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hisham M. Soliman & Ashraf Saleem & Ehab H. E. Bayoumi & Michele De Santis, 2023. "Harmonic Distortion Reduction of Transformer-Less Grid-Connected Converters by Ellipsoidal-Based Robust Control," Energies, MDPI, vol. 16(3), pages 1-18, January.
    2. Surender Reddy Salkuti, 2022. "Emerging and Advanced Green Energy Technologies for Sustainable and Resilient Future Grid," Energies, MDPI, vol. 15(18), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest Igbineweka & Sunetra Chowdhury, 2024. "Application of Dual-Tree Complex Wavelet Transform in Islanding Detection for a Hybrid AC/DC Microgrid with Multiple Distributed Generators," Energies, MDPI, vol. 17(20), pages 1-33, October.
    2. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    3. Yalong Hu & Wei Wei, 2018. "Improved Droop Control with Washout Filter," Energies, MDPI, vol. 11(9), pages 1-18, September.
    4. Jing Wang & Longhua Mu & Fan Zhang & Xin Zhang, 2017. "A Parallel Restoration for Black Start of Microgrids Considering Characteristics of Distributed Generations," Energies, MDPI, vol. 11(1), pages 1-18, December.
    5. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    7. Gianpiero Colangelo & Gianluigi Spirto & Marco Milanese & Arturo de Risi, 2021. "Progresses in Analytical Design of Distribution Grids and Energy Storage," Energies, MDPI, vol. 14(14), pages 1-43, July.
    8. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    9. Gaspari, Michele & Lorenzoni, Arturo, 2018. "The governance for distributed energy resources in the Italian electricity market: A driver for innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3623-3632.
    10. Vale, A.M. & Felix, D.G. & Fortes, M.Z. & Borba, B.S.M.C. & Dias, B.H. & Santelli, B.S., 2017. "Analysis of the economic viability of a photovoltaic generation project applied to the Brazilian housing program “Minha Casa Minha Vida”," Energy Policy, Elsevier, vol. 108(C), pages 292-298.
    11. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    12. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    13. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    14. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    15. Anestis, Anastasiadis & Georgios, Vokas, 2019. "Economic benefits of Smart Microgrids with penetration of DER and mCHP units for non-interconnected islands," Renewable Energy, Elsevier, vol. 142(C), pages 478-486.
    16. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    17. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Bueno, E.J. & Ortiz, Octavio & Reyes-Archundia, Enrique, 2017. "Synchronization algorithms for grid-connected renewable systems: Overview, tests and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 629-643.
    18. Felipe Barroco Fontes Cunha & Maria Cândida Arrais de Miranda Mousinho & Luciana Carvalho & Fábio Fernandes & Celso Castro & Marcelo Santana Silva & Ednildo Andrade Torres, 2021. "Renewable energy planning policy for the reduction of poverty in Brazil: lessons from Juazeiro," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9792-9810, July.
    19. Ferminus Raj, A. & Gnana Saravanan, A., 2023. "An optimization approach for optimal location & size of DSTATCOM and DG," Applied Energy, Elsevier, vol. 336(C).
    20. Luis Fernando Grisales-Noreña & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2018. "Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques," Energies, MDPI, vol. 11(4), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5756-:d:439317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.