IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5603-d435113.html
   My bibliography  Save this article

Structural, Optical and Photocatalytic Characterization of Zn x Cd 1−x S Solid Solutions Synthetized Using a Simple Ultrasonic Radiation Method

Author

Listed:
  • Luis Fernando Morelos Medina

    (División de Investigación y Posgrado, Facultad de Ingeniería y Facultad de Química, Universidad Autónoma de Querétaro (UAQ), Centro Universitario, Querétaro 76000, Mexico)

  • Rufino Nava

    (División de Investigación y Posgrado, Facultad de Ingeniería y Facultad de Química, Universidad Autónoma de Querétaro (UAQ), Centro Universitario, Querétaro 76000, Mexico)

  • María de los Ángeles Cuán Hernández

    (División de Investigación y Posgrado, Facultad de Ingeniería y Facultad de Química, Universidad Autónoma de Querétaro (UAQ), Centro Universitario, Querétaro 76000, Mexico)

  • Omar Said Yáñez Soria

    (División de Investigación y Posgrado, Facultad de Ingeniería y Facultad de Química, Universidad Autónoma de Querétaro (UAQ), Centro Universitario, Querétaro 76000, Mexico)

  • Bárbara Pawelec

    (Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain)

  • Rufino M. Navarro

    (Instituto de Catálisis y Petroleoquímica, CSIC, Cantoblanco, 28049 Madrid, Spain)

  • Carlos Elías Ornelas Gutiérrez

    (Centro de Investigación en Materiales Avanzados, S.C., Cimav, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua C.P. 31109, Mexico)

Abstract

A simple ultrasonic radiation method was employed for the preparation of zinc and cadmium sulfide solid solution (Zn x Cd 1−x S; x = 0–0.25 wt.%) with the aim to investigate its efficiency for H 2 production via a visible light-driven water-splitting reaction. The catalyst characterization by X-ray diffraction confirmed the formation of solid solution (Zn x Cd 1−x S) between CdS and ZnS phases. All catalysts exhibited hierarchical morphology (from SEM and TEM) formed by aggregated nanoparticles of Zn x Cd 1−x S solid solution with crystals showing mainly (111) planes of cubic CdS phase. The crystal size linearly decreased with an increase in Zn incorporation in the crystal lattice (from 4.37 nm to 3.72 nm). The Zn x Cd 1−x S photocatalysts showed a gradual increase in the H 2 evolution, with an increase in the Zn concentration up to 0.2 wt.% making the most effective Zn 0.2 Cd 0.8 S catalyst toward H 2 production. From the catalyst activity–structure correlation, it has been concluded that the twin-like CdS structure, the (111) plane and specific morphology are the main factors influencing the catalyst effectivity toward H 2 production. All those factors compensated for the negative effect of an increase in band gap energy ( E bg ) after ZnS incorporation into solid solution (from 2.21 eV to 2.34 eV). The effect of the catalyst morphology is discussed by comparing H 2 evolution over unsupported and supported Zn 0.2 Cd 0.8 S solid solutions.

Suggested Citation

  • Luis Fernando Morelos Medina & Rufino Nava & María de los Ángeles Cuán Hernández & Omar Said Yáñez Soria & Bárbara Pawelec & Rufino M. Navarro & Carlos Elías Ornelas Gutiérrez, 2020. "Structural, Optical and Photocatalytic Characterization of Zn x Cd 1−x S Solid Solutions Synthetized Using a Simple Ultrasonic Radiation Method," Energies, MDPI, vol. 13(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5603-:d:435113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Landong Li & Junqing Yan & Tuo Wang & Zhi-Jian Zhao & Jian Zhang & Jinlong Gong & Naijia Guan, 2015. "Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    2. Y.-H. Percival Zhang & Jonathan R. Mielenz, 2011. "Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy," Energies, MDPI, vol. 4(2), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bin, 2017. "Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen?," Energy Policy, Elsevier, vol. 108(C), pages 712-714.
    2. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    3. Elmer, Theo & Worall, Mark & Wu, Shenyi & Riffat, Saffa B., 2015. "Fuel cell technology for domestic built environment applications: State of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 913-931.
    4. Zhu, Rongshu & Tian, Fei & Che, Sainan & Cao, Gang & Ouyang, Feng, 2017. "The photocatalytic performance of modified ZnIn2S4 with graphene and La for hydrogen generation under visible light," Renewable Energy, Elsevier, vol. 113(C), pages 1503-1514.
    5. Shengqiang Chen & Yanxia Zhu & Qingqing Xu & Qi Jiang & Danyang Chen & Ting Chen & Xishen Xu & Zhaokui Jin & Qianjun He, 2022. "Photocatalytic glucose depletion and hydrogen generation for diabetic wound healing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Lei Luo & Lei Fu & Huifen Liu & Youxun Xu & Jialiang Xing & Chun-Ran Chang & Dong-Yuan Yang & Junwang Tang, 2022. "Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Phan Anh Duong & Bo Rim Ryu & Mi Kyoung Song & Hong Van Nguyen & Dong Nam & Hokeun Kang, 2023. "Safety Assessment of the Ammonia Bunkering Process in the Maritime Sector: A Review," Energies, MDPI, vol. 16(10), pages 1-30, May.
    8. Saraswat, Sushil Kumar & Rodene, Dylan D. & Gupta, Ram B., 2018. "Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 228-248.
    9. Li, Zhenzi & Wang, Shijie & Wu, Jiaxing & Zhou, Wei, 2022. "Recent progress in defective TiO2 photocatalysts for energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Zhao Li & Chengliang Mao & Qijun Pei & Paul N. Duchesne & Teng He & Meikun Xia & Jintao Wang & Lu Wang & Rui Song & Feysal M. Ali & Débora Motta Meira & Qingjie Ge & Kulbir Kaur Ghuman & Le He & Xiaoh, 2022. "Engineered disorder in CO2 photocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Mohammed Mahmood Katun & Rudo Kadzutu-Sithole & Nosipho Moloto & Cuthbert Nyamupangedengu & Chandima Gomes, 2021. "Improving Thermal Stability and Hydrophobicity of Rutile-TiO 2 Nanoparticles for Oil-Impregnated Paper Application," Energies, MDPI, vol. 14(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5603-:d:435113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.