IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5546-d433347.html
   My bibliography  Save this article

An Overview of Applications of the Modular Multilevel Matrix Converter

Author

Listed:
  • Matias Diaz

    (Electrical Engineering Department, University of Santiago of Chile, Avenida Ecuador 3519, Santiago 9170124, Chile)

  • Roberto Cárdenas Dobson

    (Electrical Engineering Department, University of Chile, Avenida Tupper 2007, Santiago 8370451, Chile)

  • Efrain Ibaceta

    (Electrical Engineering Department, University of Santiago of Chile, Avenida Ecuador 3519, Santiago 9170124, Chile)

  • Andrés Mora

    (Electrical Engineering Department, Universidad Técnica Federico Santa María, Valparaíso 1680, Chile)

  • Matias Urrutia

    (Electrical Engineering Department, University of Chile, Avenida Tupper 2007, Santiago 8370451, Chile)

  • Mauricio Espinoza

    (School of Electrical Engineering, University of Costa Rica, San José 11501-2060, Costa Rica)

  • Felix Rojas

    (Electrical Engineering Department, University of Santiago of Chile, Avenida Ecuador 3519, Santiago 9170124, Chile)

  • Patrick Wheeler

    (PEMC Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

The modular multilevel matrix converter is a relatively new power converter topology suitable for high-power alternating current (AC)-to-AC applications. Several publications in the literature have highlighted the converter capabilities, such as full modularity, fault-redundancy, control flexibility and input/output power quality. However, the topology and control of this converter are relatively complex to realise, considering that the converter has a large number of power-cells and floating capacitors. To the best of the authors’ knowledge, there are no review papers where the applications of the modular multilevel matrix converter are discussed. Hence, this paper aims to provide a comprehensive review of the state-of-the-art of the modular multilevel matrix converter, focusing on implementation issues and applications. Guidelines to dimensioning the key components of this converter are described and compared to other modular multilevel topologies, highlighting the versatility and controllability of the converter in high-power applications. Additionally, the most popular applications for the modular multilevel matrix converter, such as wind turbines, grid connection and motor drives, are discussed based on analyses of simulation and experimental results. Finally, future trends and new opportunities for the use of the modular multilevel matrix converter in high-power AC-to-AC applications are identified.

Suggested Citation

  • Matias Diaz & Roberto Cárdenas Dobson & Efrain Ibaceta & Andrés Mora & Matias Urrutia & Mauricio Espinoza & Felix Rojas & Patrick Wheeler, 2020. "An Overview of Applications of the Modular Multilevel Matrix Converter," Energies, MDPI, vol. 13(21), pages 1-37, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5546-:d:433347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panos Kotsampopoulos & Pavlos Georgilakis & Dimitris T. Lagos & Vasilis Kleftakis & Nikos Hatziargyriou, 2019. "FACTS Providing Grid Services: Applications and Testing," Energies, MDPI, vol. 12(13), pages 1-23, July.
    2. Alberto Duran & Efrain Ibaceta & Matias Diaz & Felix Rojas & Roberto Cardenas & Hector Chavez, 2020. "Control of a Modular Multilevel Matrix Converter for Unified Power Flow Controller Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    3. Matias Diaz & Roberto Cardenas & Efrain Ibaceta & Andrés Mora & Matias Urrutia & Mauricio Espinoza & Felix Rojas & Patrick Wheeler, 2020. "An Overview of Modelling Techniques and Control Strategies for Modular Multilevel Matrix Converters," Energies, MDPI, vol. 13(18), pages 1-38, September.
    4. Mustafa Al-Tameemi & Yushi Miura & Jia Liu & Hassan Bevrani & Toshifumi Ise, 2020. "A Novel Control Scheme for Multi-Terminal Low-Frequency AC Electrical Energy Transmission Systems Using Modular Multilevel Matrix Converters and Virtual Synchronous Generator Concept," Energies, MDPI, vol. 13(3), pages 1-19, February.
    5. Rutian Wang & Dapeng Lei & Yanfeng Zhao & Chuang Liu & Yue Hu, 2018. "Modulation Strategy of a 3 × 5 Modular Multilevel Matrix Converter," Energies, MDPI, vol. 11(2), pages 1-12, February.
    6. Jinlian Liu & Zheng Xu & Liang Xiao, 2019. "Comprehensive Power Flow Analyses and Novel Feedforward Coordination Control Strategy for MMC-Based UPFC," Energies, MDPI, vol. 12(5), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milovan Majstorovic & Marco Rivera & Leposava Ristic & Patrick Wheeler, 2021. "Comparative Study of Classical and MPC Control for Single-Phase MMC Based on V-HIL Simulations," Energies, MDPI, vol. 14(11), pages 1-17, May.
    2. Abdul Hameed Soomro & Abdul Sattar Larik & Mukhtiar Ahmed Mahar & Anwar Ali Sahito, 2022. "Simulation-Based Comparison of PID with Sliding Mode Controller for Matrix-Converter-Based Dynamic Voltage Restorer under Variation of System Parameters to Alleviate the Voltage Sag in Distribution Sy," Sustainability, MDPI, vol. 14(21), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Duran & Efrain Ibaceta & Matias Diaz & Felix Rojas & Roberto Cardenas & Hector Chavez, 2020. "Control of a Modular Multilevel Matrix Converter for Unified Power Flow Controller Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    2. Sheng Wang & Huaibao Wang & Hao Ding & Ligen Xun & Sifan Wu, 2021. "A New SVPWM Strategy for Three-Phase Isolated Converter with Current Ripple Reduction," Energies, MDPI, vol. 14(16), pages 1-15, August.
    3. Haris E. Psillakis & Antonio T. Alexandridis, 2020. "Coordinated Excitation and Static Var Compensator Control with Delayed Feedback Measurements in SGIB Power Systems," Energies, MDPI, vol. 13(9), pages 1-18, May.
    4. Luigi Pellegrino & Carlo Sandroni & Enea Bionda & Daniele Pala & Dimitris T. Lagos & Nikos Hatziargyriou & Nabil Akroud, 2020. "Remote Laboratory Testing Demonstration," Energies, MDPI, vol. 13(9), pages 1-16, May.
    5. Roberto Zanasi & Davide Tebaldi, 2021. "Modeling Control and Robustness Assessment of Multilevel Flying-Capacitor Converters," Energies, MDPI, vol. 14(7), pages 1-40, March.
    6. Minwu Chen & Yinyu Chen & Mingchi Wei, 2019. "Modeling and Control of a Novel Hybrid Power Quality Compensation System for 25-kV Electrified Railway," Energies, MDPI, vol. 12(17), pages 1-23, August.
    7. Stefano Bifaretti & Vincenzo Bonaiuto & Sabino Pipolo & Cristina Terlizzi & Pericle Zanchetta & Francesco Gallinelli & Silvio Alessandroni, 2021. "Power Flow Management by Active Nodes: A Case Study in Real Operating Conditions," Energies, MDPI, vol. 14(15), pages 1-16, July.
    8. Milovan Majstorovic & Marco Rivera & Leposava Ristic & Patrick Wheeler, 2021. "Comparative Study of Classical and MPC Control for Single-Phase MMC Based on V-HIL Simulations," Energies, MDPI, vol. 14(11), pages 1-17, May.
    9. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    10. Manuel Ayala-Chauvin & Bahodurjon S. Kavrakov & Jorge Buele & José Varela-Aldás, 2021. "Static Reactive Power Compensator Design, Based on Three-Phase Voltage Converter," Energies, MDPI, vol. 14(8), pages 1-16, April.
    11. Gregorio Fernández & Alejandro Martínez & Noemí Galán & Javier Ballestín-Fuertes & Jesús Muñoz-Cruzado-Alba & Pablo López & Simon Stukelj & Eleni Daridou & Alessio Rezzonico & Dimosthenis Ioannidis, 2021. "Optimal D-STATCOM Placement Tool for Low Voltage Grids," Energies, MDPI, vol. 14(14), pages 1-31, July.
    12. Hyun-Keun Ku & Hyuk-Il Kwon & Ji-Young Song & Seung-Chan Oh & Jeong-Hoon Shin, 2023. "Analysis of the System Impact upon Thyristor Controlled Series Capacitor Relocation Due to Changes in the Power System Environment," Energies, MDPI, vol. 16(2), pages 1-12, January.
    13. Jiyoung Song & Seungchan Oh & Jaegul Lee & Jeonghoon Shin & Gilsoo Jang, 2020. "Application of the First Replica Controller in Korean Power Systems," Energies, MDPI, vol. 13(13), pages 1-13, June.
    14. Antonio Moretti & Charalampos Pitas & George Christofi & Emmanuel Bué & Modesto Gabrieli Francescato, 2020. "Grid Integration as a Strategy of Med-TSO in the Mediterranean Area in the Framework of Climate Change and Energy Transition," Energies, MDPI, vol. 13(20), pages 1-22, October.
    15. Hanan Tariq & Stanislaw Czapp & Sarmad Tariq & Khalid Mehmood Cheema & Aqarib Hussain & Ahmad H. Milyani & Sultan Alghamdi & Z. M. Salem Elbarbary, 2022. "Comparative Analysis of Reactive Power Compensation Devices in a Real Electric Substation," Energies, MDPI, vol. 15(12), pages 1-17, June.
    16. Panos Kotsampopoulos & Pavlos Georgilakis & Dimitris T. Lagos & Vasilis Kleftakis & Nikos Hatziargyriou, 2019. "FACTS Providing Grid Services: Applications and Testing," Energies, MDPI, vol. 12(13), pages 1-23, July.
    17. Manuel Barragán-Villarejo & Francisco de Paula García-López & Alejandro Marano-Marcolini & José María Maza-Ortega, 2020. "Power System Hardware in the Loop (PSHIL): A Holistic Testing Approach for Smart Grid Technologies," Energies, MDPI, vol. 13(15), pages 1-22, July.
    18. Matias Diaz & Roberto Cardenas & Efrain Ibaceta & Andrés Mora & Matias Urrutia & Mauricio Espinoza & Felix Rojas & Patrick Wheeler, 2020. "An Overview of Modelling Techniques and Control Strategies for Modular Multilevel Matrix Converters," Energies, MDPI, vol. 13(18), pages 1-38, September.
    19. Chien-Hsun Wu & Yong-Xiang Xu, 2019. "The Optimal Control of Fuel Consumption for a Heavy-Duty Motorcycle with Three Power Sources Using Hardware-in-the-Loop Simulation," Energies, MDPI, vol. 13(1), pages 1-16, December.
    20. Chen Xu & Jingjing Chen & Ke Dai, 2020. "Carrier-Phase-Shifted Rotation Pulse-Width-Modulation Scheme for Dynamic Active Power Balance of Modules in Cascaded H-Bridge STATCOMs," Energies, MDPI, vol. 13(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5546-:d:433347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.