IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5398-d428958.html
   My bibliography  Save this article

Supporting Decentralised Energy Management through Smart Monitoring Systems in Public Authorities

Author

Listed:
  • Graeme Stuart

    (Institute of Energy and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK)

  • Leticia Ozawa-Meida

    (Institute of Energy and Sustainable Development, De Montfort University, Leicester LE1 9BH, UK)

Abstract

Energy infrastructure in large, multi-site organisations such as municipal authorities, is often heterogeneous in terms of factors such as age and complexity of the technology deployed. Responsibility for day-to-day operation and maintenance of this infrastructure is typically dispersed across large numbers of individuals and impacts on even larger numbers of building users. Yet, the diverse population of stakeholders with an interest in the operation and development of this dynamic infrastructure typically have little or no visibility of energy and water usage. This paper explores the integration of utility metering data into urban management processes via the deployment of an accessible “smart meter” monitoring system. The system is deployed in three public authorities and the impact of the system is investigated based on the triangulation of evidence from semi-structured interviews and case studies. The research is framed from three perspectives: the bottom-up micro-level (individual and local), the top-down macro-level (organisation-wide and strategic) and intermediate meso-level (community-focused and operation). Evidence shows that improved communication across these levels enables a decentralisation and joining-up of energy management. Evidence points to the importance of reducing the cognitive load associated with monitoring systems. Better access to information supports more local autonomy, easier communication and cooperation between stakeholders and fosters the conditions necessary for adaptive practices to emerge.

Suggested Citation

  • Graeme Stuart & Leticia Ozawa-Meida, 2020. "Supporting Decentralised Energy Management through Smart Monitoring Systems in Public Authorities," Energies, MDPI, vol. 13(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5398-:d:428958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Fredericks & Zhong Fan & Sandra Woolley & Ed de Quincey & Mike Streeton, 2020. "A Decade On, How Has the Visibility of Energy Changed? Energy Feedback Perceptions from UK Focus Groups," Energies, MDPI, vol. 13(10), pages 1-17, May.
    2. Goulden, Murray & Spence, Alexa, 2015. "Caught in the middle: The role of the Facilities Manager in organisational energy use," Energy Policy, Elsevier, vol. 85(C), pages 280-287.
    3. Blass, Vered & Corbett, Charles J. & Delmas, Magali A. & Muthulingam, Suresh, 2014. "Top management and the adoption of energy efficiency practices: Evidence from small and medium-sized manufacturing firms in the US," Energy, Elsevier, vol. 65(C), pages 560-571.
    4. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    5. Ozawa-Meida, Leticia & Wilson, Caroline & Fleming, Paul & Stuart, Graeme & Holland, Carl, 2017. "Institutional, social and individual behavioural effects of energy feedback in public buildings across eleven European cities," Energy Policy, Elsevier, vol. 110(C), pages 222-233.
    6. Anderson, Kyle & Song, Kwonsik & Lee, SangHyun & Krupka, Erin & Lee, Hyunsoo & Park, Moonseo, 2017. "Longitudinal analysis of normative energy use feedback on dormitory occupants," Applied Energy, Elsevier, vol. 189(C), pages 623-639.
    7. Zhang, Yixiang & Wei, Yimin & Zhou, Guanghui, 2018. "Promoting firms’ energy-saving behavior: The role of institutional pressures, top management support and financial slack," Energy Policy, Elsevier, vol. 115(C), pages 230-238.
    8. Marshall, Graham R., 2013. "Transaction costs, collective action and adaptation in managing complex social–ecological systems," Ecological Economics, Elsevier, vol. 88(C), pages 185-194.
    9. Buchanan, Kathryn & Banks, Nick & Preston, Ian & Russo, Riccardo, 2016. "The British public’s perception of the UK smart metering initiative: Threats and opportunities," Energy Policy, Elsevier, vol. 91(C), pages 87-97.
    10. Burgess, Jacquelin & Nye, Michael, 2008. "Re-materialising energy use through transparent monitoring systems," Energy Policy, Elsevier, vol. 36(12), pages 4454-4459, December.
    11. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    12. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimosthenis Kotsopoulos, 2022. "Organizational Energy Conservation Matters in the Anthropocene," Energies, MDPI, vol. 15(21), pages 1-30, November.
    2. Ozawa-Meida, Leticia & Wilson, Caroline & Fleming, Paul & Stuart, Graeme & Holland, Carl, 2017. "Institutional, social and individual behavioural effects of energy feedback in public buildings across eleven European cities," Energy Policy, Elsevier, vol. 110(C), pages 222-233.
    3. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Zha, Donglan & Zhang, Chaoqun & Jiang, Pansong & Wang, Fu, 2024. "What makes energy consumption behavior visible? Conceptualization, scale development and validation of customized information feedback," Journal of Business Research, Elsevier, vol. 182(C).
    5. Walter Salas-Zapata & Anny Posada-Castaño & Diana Mejía-Durango, 2021. "An explanation of the behavioral origin of moderation in the use of natural resources: a meta-synthesis study," Environment Systems and Decisions, Springer, vol. 41(4), pages 487-500, December.
    6. Hanna Mela & Juha Peltomaa & Marja Salo & Kirsi Mäkinen & Mikael Hildén, 2018. "Framing Smart Meter Feedback in Relation to Practice Theory," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    7. David Fredericks & Zhong Fan & Sandra Woolley & Ed de Quincey & Mike Streeton, 2020. "A Decade On, How Has the Visibility of Energy Changed? Energy Feedback Perceptions from UK Focus Groups," Energies, MDPI, vol. 13(10), pages 1-17, May.
    8. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    9. Moeller, Simon & Bauer, Amelie, 2022. "Energy (in)efficient comfort practices: How building retrofits influence energy behaviours in multi-apartment buildings," Energy Policy, Elsevier, vol. 168(C).
    10. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    12. Karen Bickerstaff & Emma Hinton & Harriet Bulkeley, 2016. "Decarbonisation at home: The contingent politics of experimental domestic energy technologies," Environment and Planning A, , vol. 48(10), pages 2006-2025, October.
    13. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    14. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    15. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    16. Pelenur, Marcos J. & Cruickshank, Heather J., 2012. "Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home," Energy, Elsevier, vol. 47(1), pages 348-357.
    17. Cellina, Francesca & Fraternali, Piero & Herrera Gonzalez, Sergio Luis & Novak, Jasminko & Gui, Marco & Rizzoli, Andrea Emilio, 2024. "Significant but transient: The impact of an energy saving app targeting Swiss households," Applied Energy, Elsevier, vol. 355(C).
    18. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying, 2018. "Public acceptance of household energy-saving measures in Beijing: Heterogeneous preferences and policy implications," Energy Policy, Elsevier, vol. 113(C), pages 487-499.
    20. Nilsson, Anders & Bartusch, Cajsa, 2024. "Empowered or enchained? Exploring consumer perspectives on Direct Load Control," Energy Policy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5398-:d:428958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.