IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5002-d417989.html
   My bibliography  Save this article

Spatial Straight-Line Drawing Algorithm Based on Method of Discriminate Regions—A Control Algorithm of Motors

Author

Listed:
  • Jianping Wang

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Shiguang Xiao

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Tao Song

    (State Grid Jiaozuo Power Supply Company, Jiaozuo 454000, China)

  • Junqi Yue

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Pingyan Bian

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Yu Li

    (School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

A novelty algorithm of spatial straight-line drawing based on a method of discriminate regions is proposed in this paper based on Bresenham’s algorithm. Three-dimensional space is divided into innumerable three-dimensional meshes according to the given rule; the distance between the start and the end points of the three coordinates is Δx , Δy , and Δz , respectively; the distribution types of spatial straight line and the position of the end point are determined by judging the relationship among Δx , Δy , and Δz ; then, the active-passive directions can be determined. The plane of the ending point of the straight line in a three-dimensional mesh is divided into four regions; then, the discriminant is obtained; and this discriminant determine which region the point is located in The algorithm is verified and analyzed by the method of contrastive analysis; the results show that: the error of the algorithm is related to the step length L; the maximum theoretical error is 0.7071*L. The discriminants are all integers, so the problem of deviation from the theoretical straight line caused by the retention of decimals of significant digits can be avoided. Finally, the algorithm is applied to the cooperative control of multiple motors, and conversion between unit grid number and pulse number of motors is performed.

Suggested Citation

  • Jianping Wang & Shiguang Xiao & Tao Song & Junqi Yue & Pingyan Bian & Yu Li, 2020. "Spatial Straight-Line Drawing Algorithm Based on Method of Discriminate Regions—A Control Algorithm of Motors," Energies, MDPI, vol. 13(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5002-:d:417989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tehzeeb-ul Hassan & Rabeh Abbassi & Houssem Jerbi & Kashif Mehmood & Muhammad Faizan Tahir & Khalid Mehmood Cheema & Rajvikram Madurai Elavarasan & Farman Ali & Irfan Ahmad Khan, 2020. "A Novel Algorithm for MPPT of an Isolated PV System Using Push Pull Converter with Fuzzy Logic Controller," Energies, MDPI, vol. 13(15), pages 1-20, August.
    2. Jinhong Li & Dawei Meng, 2020. "Dynamic and Adjustable New Pattern Four-Vector SVPWM Algorithm for Application in a Five-Phase Induction Motor," Energies, MDPI, vol. 13(7), pages 1-21, April.
    3. Cieśliński, Jan L. & Moroz, Leonid V. & Walczyk, Cezary J., 2015. "Fast exact digital differential analyzer for circle generation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 68-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachin Kumar & Kumari Sarita & Akanksha Singh S Vardhan & Rajvikram Madurai Elavarasan & R. K. Saket & Narottam Das, 2020. "Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique," Energies, MDPI, vol. 13(21), pages 1-30, October.
    2. Byungki Kim & Hwa-Pyeong Park, 2023. "Non-Isolated Current-Fed Series Resonant Converter with Hybrid Control Algorithms for DC Microgrid," Energies, MDPI, vol. 16(16), pages 1-16, August.
    3. Kostas Bavarinos & Anastasios Dounis & Panagiotis Kofinas, 2021. "Maximum Power Point Tracking Based on Reinforcement Learning Using Evolutionary Optimization Algorithms," Energies, MDPI, vol. 14(2), pages 1-23, January.
    4. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    5. Tarek A. Boghdady & Yasmin E. Kotb & Abdullah Aljumah & Mahmoud M. Sayed, 2022. "Comparative Study of Optimal PV Array Configurations and MPPT under Partial Shading with Fast Dynamical Change of Hybrid Load," Sustainability, MDPI, vol. 14(5), pages 1-17, March.
    6. Ibrahim Al-Wesabi & Zhijian Fang & Hassan M. Hussein Farh & Abdullrahman A. Al-Shamma’a & Abdullah M. Al-Shaalan & Tarek Kandil & Min Ding, 2022. "Cuckoo Search Combined with PID Controller for Maximum Power Extraction of Partially Shaded Photovoltaic System," Energies, MDPI, vol. 15(7), pages 1-26, March.
    7. Ramzi Saidi & Jean-Christophe Olivier & Mohamed Machmoum & Eric Chauveau, 2021. "Cascaded Centered Moving Average Filters for Energy Management in Multisource Power Systems with a Large Number of Devices," Energies, MDPI, vol. 14(12), pages 1-21, June.
    8. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2022. "A Maximum Power Point Tracker Using the Bald Eagle Search Technique for Grid-Connected Photovoltaic Systems," Energies, MDPI, vol. 15(23), pages 1-16, December.
    9. Ghulam Mustafa & Fiaz Ahmad, 2022. "Review on Performance Analysis of Three Control Techniques for Buck Converter feeding a Resistive Load," International Journal of Innovations in Science & Technology, 50sea, vol. 4(5), pages 39-51, June.
    10. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    11. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5002-:d:417989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.