IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4973-d417399.html
   My bibliography  Save this article

Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology

Author

Listed:
  • Zoltán Csedő

    (Power-to-Gas Hungary Kft, 5000 Szolnok, Hungary
    Department of Management and Organization, Corvinus University of Budapest, 1093 Budapest, Hungary)

  • Botond Sinóros-Szabó

    (Power-to-Gas Hungary Kft, 5000 Szolnok, Hungary)

  • Máté Zavarkó

    (Power-to-Gas Hungary Kft, 5000 Szolnok, Hungary
    Department of Management and Organization, Corvinus University of Budapest, 1093 Budapest, Hungary)

Abstract

Power-to-methane technology (P2M) deployment at wastewater treatment plants (WWTPs) for seasonal energy storage might land on the agenda of decision-makers across EU countries, since large WWTPs produce a notable volume of biogas that could be injected into the natural gas grid with remarkable storage capacities. Because of the recent rapid increase of local photovoltaics (PV), it is essential to explore the role of WWTPs in energy storage and the conditions under which this potential can be realized. This study integrates a techno-economic assessment of P2M technology with commercial/investment attractiveness of seasonal energy storage at large WWTPs. Findings show that a standardized 1 MW el P2M technology would fit with most potential sites. This is in line with the current technology readiness level of P2M, but increasing electricity prices and limited financial resources of WWTPs would decrease the commercial attractiveness of P2M technology deployment. Based on a Hungarian case study, public funding, biomethane feed-in tariff and minimized or compensated surplus electricity sourcing costs are essential to realize the energy storage potential at WWTPs.

Suggested Citation

  • Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4973-:d:417399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    3. Michael Schäfer & Oliver Gretzschel & Heidrun Steinmetz, 2020. "The Possible Roles of Wastewater Treatment Plants in Sector Coupling," Energies, MDPI, vol. 13(8), pages 1-20, April.
    4. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    5. Attila R. Imre & Réka Kustán & Axel Groniewsky, 2019. "Thermodynamic Selection of the Optimal Working Fluid for Organic Rankine Cycles," Energies, MDPI, vol. 12(10), pages 1-15, May.
    6. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    7. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    8. Gábor Pintér & Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & Zoltán Birkner, 2020. "The Economic and Geographical Aspects of the Status of Small-Scale Photovoltaic Systems in Hungary—A Case Study," Energies, MDPI, vol. 13(13), pages 1-22, July.
    9. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    10. Ceballos-Escalera, Alba & Molognoni, Daniele & Bosch-Jimenez, Pau & Shahparasti, Mahdi & Bouchakour, Salim & Luna, Alvaro & Guisasola, Albert & Borràs, Eduard & Della Pirriera, Monica, 2020. "Bioelectrochemical systems for energy storage: A scaled-up power-to-gas approach," Applied Energy, Elsevier, vol. 260(C).
    11. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    12. Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
    13. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    14. Sarwar, Suleman & Shahzad, Umer & Chang, Dongfeng & Tang, Biyan, 2019. "Economic and non-economic sector reforms in carbon mitigation: Empirical evidence from Chinese provinces," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 146-154.
    15. Oliver Gretzschel & Michael Schäfer & Heidrun Steinmetz & Erich Pick & Kim Kanitz & Stefan Krieger, 2020. "Advanced Wastewater Treatment to Eliminate Organic Micropollutants in Wastewater Treatment Plants in Combination with Energy-Efficient Electrolysis at WWTP Mainz," Energies, MDPI, vol. 13(14), pages 1-28, July.
    16. Mazza, Andrea & Bompard, Ettore & Chicco, Gianfranco, 2018. "Applications of power to gas technologies in emerging electrical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 794-806.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    2. Pintér, Gábor, 2024. "The development of global power-to-methane potentials between 2000 and 2020: A comparative overview of international projects," Applied Energy, Elsevier, vol. 353(PA).
    3. Ihsan Hamawand, 2023. "Energy Consumption in Water/Wastewater Treatment Industry—Optimisation Potentials," Energies, MDPI, vol. 16(5), pages 1-3, March.
    4. Kristóf Kummer & Attila R. Imre, 2021. "Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology," Energies, MDPI, vol. 14(11), pages 1-13, June.
    5. Attila Bai & Péter Balogh & Adrián Nagy & Zoltán Csedő & Botond Sinóros-Szabó & Gábor Pintér & Sanjeev Kumar Prajapati & Amit Singh & Zoltán Gabnai, 2023. "Economic Evaluation of a 1 MW el Capacity Power-to-Biomethane System," Energies, MDPI, vol. 16(24), pages 1-27, December.
    6. Zoltán Csedő & József Magyari & Máté Zavarkó, 2022. "Dynamic Corporate Governance, Innovation, and Sustainability: Post-COVID Period," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    7. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    8. Attila R. Imre, 2022. "Seasonal Energy Storage with Power-to-Methane Technology," Energies, MDPI, vol. 15(3), pages 1-2, January.
    9. Renata Rodrigues Lautert & Wagner da Silva Brignol & Luciane Neves Canha & Olatunji Matthew Adeyanju & Vinícius Jacques Garcia, 2022. "A Flexible-Reliable Operation Model of Storage and Distributed Generation in a Biogas Power Plant," Energies, MDPI, vol. 15(9), pages 1-21, April.
    10. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    11. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    2. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    3. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    4. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    5. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    6. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    7. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    8. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    9. Fózer, Dániel & Volanti, Mirco & Passarini, Fabrizio & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Mizsey, Péter, 2020. "Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification," Applied Energy, Elsevier, vol. 280(C).
    10. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    12. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    13. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    14. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    15. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    16. Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
    17. Kirchbacher, F. & Miltner, M. & Wukovits, W. & Harasek, M., 2019. "Economic assessment of membrane-based power-to-gas processes for the European biogas market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 338-352.
    18. Eveloy, Valerie & Gebreegziabher, Tesfaldet, 2019. "Excess electricity and power-to-gas storage potential in the future renewable-based power generation sector in the United Arab Emirates," Energy, Elsevier, vol. 166(C), pages 426-450.
    19. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    20. Carlos V. Miguel & Adélio Mendes & Luís M. Madeira, 2018. "An Overview of the Portuguese Energy Sector and Perspectives for Power-to-Gas Implementation," Energies, MDPI, vol. 11(12), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4973-:d:417399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.