IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4579-d408637.html
   My bibliography  Save this article

Life Cycle Assessment of Synthetic Natural Gas Production from Different CO 2 Sources: A Cradle-to-Gate Study

Author

Listed:
  • Eleonora Bargiacchi

    (Department of Energy, Systems, Territory and Construction Engineering (DESTeC), University of Pisa, 56122 Pisa, Italy)

  • Nils Thonemann

    (Fraunhofer Institute for Environmental, Safety, and Energy Technology, UMSICHT, 46047 Oberhausen, Germany)

  • Jutta Geldermann

    (Business Administration and Production Management, University of Duisburg-Essen, 47057 Duisburg, Germany)

  • Marco Antonelli

    (Department of Energy, Systems, Territory and Construction Engineering (DESTeC), University of Pisa, 56122 Pisa, Italy)

  • Umberto Desideri

    (Department of Energy, Systems, Territory and Construction Engineering (DESTeC), University of Pisa, 56122 Pisa, Italy)

Abstract

Fuel production from hydrogen and carbon dioxide is considered an attractive solution as long-term storage of electric energy and as temporary storage of carbon dioxide. A large variety of CO 2 sources are suitable for Carbon Capture Utilization (CCU), and the process energy intensity depends on the separation technology and, ultimately, on the CO 2 concentration in the flue gas. Since the carbon capture process emits more CO 2 than the expected demand for CO 2 utilization, the most sustainable CO 2 sources must be selected. This work aimed at modeling a Power-to-Gas (PtG) plant and assessing the most suitable carbon sources from a Life Cycle Assessment (LCA) perspective. The PtG plant was supplied by electricity from a 2030 scenario for Italian electricity generation. The plant impacts were assessed using data from the ecoinvent database version 3.5, for different CO 2 sources (e.g., air, cement, iron, and steel plants). A detailed discussion on how to handle multi-functionality was also carried out. The results showed that capturing CO 2 from hydrogen production plants and integrated pulp and paper mills led to the lowest impacts concerning all investigated indicators. The choice of how to handle multi-functional activities had a crucial impact on the assessment.

Suggested Citation

  • Eleonora Bargiacchi & Nils Thonemann & Jutta Geldermann & Marco Antonelli & Umberto Desideri, 2020. "Life Cycle Assessment of Synthetic Natural Gas Production from Different CO 2 Sources: A Cradle-to-Gate Study," Energies, MDPI, vol. 13(17), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4579-:d:408637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wieland Hoppe & Nils Thonemann & Stefan Bringezu, 2018. "Life Cycle Assessment of Carbon Dioxide–Based Production of Methane and Methanol and Derived Polymers," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 327-340, April.
    2. Bargiacchi, Eleonora & Antonelli, Marco & Desideri, Umberto, 2019. "A comparative assessment of Power-to-Fuel production pathways," Energy, Elsevier, vol. 183(C), pages 1253-1265.
    3. Thonemann, Nils, 2020. "Environmental impacts of CO2-based chemical production: A systematic literature review and meta-analysis," Applied Energy, Elsevier, vol. 263(C).
    4. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuela Marzi & Mirko Morini & Agostino Gambarotta, 2022. "Analysis of the Status of Research and Innovation Actions on Electrofuels under Horizon 2020," Energies, MDPI, vol. 15(2), pages 1-35, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sillman, Jani & Havukainen, Jouni & Alfasfos, Rami & Elyasi, Nashmin & Lilja, Miro & Ruuskanen, Vesa & Laasonen, Emma & Leppäkoski, Lauri & Uusitalo, Ville & Soukka, Risto, 2024. "Meta-analysis of climate impact reduction potential of hydrogen usage in 9 Power-to-X pathways," Applied Energy, Elsevier, vol. 359(C).
    2. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Thonemann, Nils, 2020. "Environmental impacts of CO2-based chemical production: A systematic literature review and meta-analysis," Applied Energy, Elsevier, vol. 263(C).
    5. Ravikumar, Dwarakanath & Keoleian, Gregory & Miller, Shelie, 2020. "The environmental opportunity cost of using renewable energy for carbon capture and utilization for methanol production," Applied Energy, Elsevier, vol. 279(C).
    6. Koj, Jan Christian & Wulf, Christina & Zapp, Petra, 2019. "Environmental impacts of power-to-X systems - A review of technological and methodological choices in Life Cycle Assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 865-879.
    7. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    8. Piciu Gabriela-Cornelia, 2021. "Decarbonisation Of Economy In Romania," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 98-104, October.
    9. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Benítez-Guerrero, M. & Perejón, A. & Romeo, L.M., 2017. "The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process," Applied Energy, Elsevier, vol. 196(C), pages 1-17.
    10. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    11. Stefan Bringezu, 2019. "Toward Science-Based and Knowledge-Based Targets for Global Sustainable Resource Use," Resources, MDPI, vol. 8(3), pages 1-21, August.
    12. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    13. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    14. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    15. Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Marek Jaszczur, 2023. "A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    16. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Agata Jaroń & Anna Borucka & Rafał Parczewski, 2022. "Analysis of the Impact of the COVID-19 Pandemic on the Value of CO 2 Emissions from Electricity Generation," Energies, MDPI, vol. 15(13), pages 1-15, June.
    18. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    19. Lechón, Yolanda & Lago, Carmen & Herrera, Israel & Gamarra, Ana Rosa & Pérula, Alberto, 2023. "Carbon benefits of different energy storage alternative end uses. Application to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Parra, David & Zhang, Xiaojin & Bauer, Christian & Patel, Martin K., 2017. "An integrated techno-economic and life cycle environmental assessment of power-to-gas systems," Applied Energy, Elsevier, vol. 193(C), pages 440-454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4579-:d:408637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.