IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4562-d408280.html
   My bibliography  Save this article

Multi-Rate Real-Time Simulation Method Based on the Norton Equivalent

Author

Listed:
  • Junjie Zhu

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Bingda Zhang

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

For the problem of poor accuracy of the existing multi-rate simulation methods, this paper proposes a multi-rate real-time simulation method based on the Norton equivalent, compared with multi-rate simulation method based on the ideal source equivalent. After the Norton equivalence of the fast subsystem and the slow subsystem are established, they are solved simultaneously at the junction nodes. In order to reduce the amount of the simulation calculation, the Norton equivalent circuit is obtained by incremental calculation. The data interaction between the fast subsystem and the slow subsystem is realized by extrapolation method. For ensuring the real-time performance of the simulation, the method of the slow subsystem calculates ahead of the fast subsystem is given for the slow subsystem with a large amount of calculation. Finally, the AC/DC hybrid power system was simulated on the real-time simulation platform (FPGA-based Real-Time Digital Solver, FRTDS), and the simulation results were compared with the single-rate simulation, which verified the correctness and accuracy of the proposed method.

Suggested Citation

  • Junjie Zhu & Bingda Zhang, 2020. "Multi-Rate Real-Time Simulation Method Based on the Norton Equivalent," Energies, MDPI, vol. 13(17), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4562-:d:408280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bingda Zhang & Ruizhao Hu & Sijia Tu & Jie Zhang & Xianglong Jin & Yun Guan & Junjie Zhu, 2018. "Modeling of Power System Simulation Based on FRTDS," Energies, MDPI, vol. 11(10), pages 1-17, October.
    2. Bingda Zhang & Xianglong Jin & Sijia Tu & Zhao Jin & Jie Zhang, 2019. "A New FPGA-Based Real-Time Digital Solver for Power System Simulation," Energies, MDPI, vol. 12(24), pages 1-22, December.
    3. Bingda Zhang & Shaowen Fu & Zhao Jin & Ruizhao Hu, 2017. "A Novel FPGA-Based Real-Time Simulator for Micro-Grids," Energies, MDPI, vol. 10(8), pages 1-17, August.
    4. Bingda Zhang & Yang Wang & Sijia Tu & Zhao Jin, 2018. "FPGA-Based Real-Time Digital Solver for Electro-Mechanical Transient Simulation," Energies, MDPI, vol. 11(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruyun Cheng & Li Yao & Xinyang Yan & Bingda Zhang & Zhao Jin, 2021. "High Flexibility Hybrid Architecture Real-Time Simulation Platform Based on Field-Programmable Gate Array (FPGA)," Energies, MDPI, vol. 14(19), pages 1-16, September.
    2. Bingda Zhang & Xianglong Jin & Sijia Tu & Zhao Jin & Jie Zhang, 2019. "A New FPGA-Based Real-Time Digital Solver for Power System Simulation," Energies, MDPI, vol. 12(24), pages 1-22, December.
    3. Xizheng Guo & Jiaqi Yuan & Yiguo Tang & Xiaojie You, 2018. "Hardware in the Loop Real-time Simulation for the Associated Discrete Circuit Modeling Optimization Method of Power Converters," Energies, MDPI, vol. 11(11), pages 1-14, November.
    4. Zhao Jin & Jie Zhang & Shuyuan Wang & Bingda Zhang, 2023. "Component-Oriented Modeling Method for Real-Time Simulation of Power Systems," Energies, MDPI, vol. 16(6), pages 1-19, March.
    5. Heba-Allah I. ElAzab & R. A. Swief & Hanady H. Issa & Noha H. El-Amary & Alsnosy Balbaa & H. K. Temraz, 2018. "FPGA Eco Unit Commitment Based Gravitational Search Algorithm Integrating Plug-in Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-17, September.
    6. Shuo Jin & Hao Yu & Xiaopeng Fu & Zhiying Wang & Kai Yuan & Peng Li, 2019. "A Universal Design of FPGA-Based Real-Time Simulator for Active Distribution Networks Based on Reconfigurable Computing," Energies, MDPI, vol. 12(11), pages 1-16, May.
    7. Borja Rodríguez & Francisco González & Miguel Ángel Naya & Javier Cuadrado, 2020. "Assessment of Methods for the Real-Time Simulation of Electronic and Thermal Circuits," Energies, MDPI, vol. 13(6), pages 1-26, March.
    8. Bingda Zhang & Yang Wang & Sijia Tu & Zhao Jin, 2018. "FPGA-Based Real-Time Digital Solver for Electro-Mechanical Transient Simulation," Energies, MDPI, vol. 11(10), pages 1-19, October.
    9. Zhao Jin & Yanjie Wu & Shuyuan Wang & Bingda Zhang, 2022. "FPGA-Based Real-Time Simulation of Dual-Port Submodule MMC–HVDC System," Energies, MDPI, vol. 15(13), pages 1-19, June.
    10. Guido Ala & Massimo Caruso & Rosario Miceli & Filippo Pellitteri & Giuseppe Schettino & Marco Trapanese & Fabio Viola, 2019. "Experimental Investigation on the Performances of a Multilevel Inverter Using a Field Programmable Gate Array-Based Control System," Energies, MDPI, vol. 12(6), pages 1-17, March.
    11. Bingda Zhang & Ruizhao Hu & Sijia Tu & Jie Zhang & Xianglong Jin & Yun Guan & Junjie Zhu, 2018. "Modeling of Power System Simulation Based on FRTDS," Energies, MDPI, vol. 11(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4562-:d:408280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.