IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4381-d403709.html
   My bibliography  Save this article

Regional Integrated Energy Site Layout Optimization Based on Improved Artificial Immune Algorithm

Author

Listed:
  • Yan Xu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University (Baoding), Baoding 071003, China)

  • Jianhao Zhang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University (Baoding), Baoding 071003, China)

Abstract

Regional integrated energy site layout optimization involves multi-energy coupling, multi-data processing and multi-objective decision making, among other things. It is essentially a kind of non-convex multi-objective nonlinear programming problem, which is very difficult to solve by traditional methods. This paper proposes a decentralized optimization and comprehensive decision-making planning strategy and preprocesses the data information, so as to reduce the difficulty of solving the problem and improve operational efficiency. Three objective functions, namely the number of energy stations to be built, the coverage rate and the transmission load capacity of pipeline network, are constructed, normalized by linear weighting method, and solved by the improved p -median model to obtain the optimal value of comprehensive benefits. The artificial immune algorithm was improved from the three aspects of the initial population screening mechanism, population updating and bidirectional crossover-mutation, and its performance was preliminarily verified by test function. Finally, an improved artificial immune algorithm is used to solve and optimize the regional integrated energy site layout model. The results show that the strategies, models and methods presented in this paper are feasible and can meet the interest needs and planning objectives of different decision-makers.

Suggested Citation

  • Yan Xu & Jianhao Zhang, 2020. "Regional Integrated Energy Site Layout Optimization Based on Improved Artificial Immune Algorithm," Energies, MDPI, vol. 13(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4381-:d:403709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongfeng Zou & Weihao Yang & Shirley Ye Sheng & Xin Yan, 2024. "Research on the Location Selection Problem of Electric Bicycle Battery Exchange Cabinets Based on an Improved Immune Algorithm," Sustainability, MDPI, vol. 16(19), pages 1-21, September.
    2. Di Xu & Wenhui Pei & Qi Zhang, 2022. "Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience," Energies, MDPI, vol. 15(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    3. Ding, Shixing & Gu, Wei & Lu, Shuai & Yu, Ruizhi & Sheng, Lina, 2022. "Cyber-attack against heating system in integrated energy systems: Model and propagation mechanism," Applied Energy, Elsevier, vol. 311(C).
    4. Jiang, Tao & Zhang, Rufeng & Li, Xue & Chen, Houhe & Li, Guoqing, 2021. "Integrated energy system security region: Concepts, methods, and implementations," Applied Energy, Elsevier, vol. 283(C).
    5. Xiao, Jun & Lin, Xiqiao & Jiao, Heng & Song, Chenhui & Zhou, Huan & Zu, Guoqiang & Zhou, Chunli & Wang, Dan, 2023. "Model, calculation, and application of available supply capability for distribution systems," Applied Energy, Elsevier, vol. 348(C).
    6. Jun Zhang & Jiangquan Wang & Linling Zhang & Lei Zhao, 2022. "Impact of industrialization on China’s regional energy security in the New Era," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8418-8440, June.
    7. Shirazi, Masoud & Fuinhas, José Alberto, 2023. "Portfolio decisions of primary energy sources and economic complexity: The world's large energy user evidence," Renewable Energy, Elsevier, vol. 202(C), pages 347-361.
    8. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Zhou, Suyang & Chen, Jinyi & Gu, Wei & Fang, Xin & Yuan, Xiaodong, 2023. "An adaptive space-step simulation approach for steam heating network considering condensate loss," Energy, Elsevier, vol. 263(PA).
    10. Mu, Yunfei & Chen, Wanqing & Yu, Xiaodan & Jia, Hongjie & Hou, Kai & Wang, Congshan & Meng, Xianjun, 2020. "A double-layer planning method for integrated community energy systems with varying energy conversion efficiencies," Applied Energy, Elsevier, vol. 279(C).
    11. Shirazi, Masoud, 2022. "Assessing energy trilemma-related policies: The world's large energy user evidence," Energy Policy, Elsevier, vol. 167(C).
    12. Gao, Han & Zhao, Peiyao & Li, Zhengshuo, 2024. "Dynamic security region of natural gas systems in integrated electricity-gas systems," Energy, Elsevier, vol. 289(C).
    13. Lei, Yang & Wang, Dan & Jia, Hongjie & Chen, Jingcheng & Li, Jingru & Song, Yi & Li, Jiaxi, 2020. "Multi-objective stochastic expansion planning based on multi-dimensional correlation scenario generation method for regional integrated energy system integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    14. Li, Yaohong & Tian, Ran & Wei, Mingshan, 2022. "Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies," Applied Energy, Elsevier, vol. 310(C).
    15. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    16. Zhuang, Wennan & Zhou, Suyang & Gu, Wei & Chen, Xiaogang, 2021. "Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing," Applied Energy, Elsevier, vol. 290(C).
    17. Yongheng Luo & Zhonglong Li & Sen Li & Fei Jiang, 2023. "Risk Assessment for Energy Stations Based on Real-Time Equipment Failure Rates and Security Boundaries," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    18. Lin, Yujun & Yang, Qiufan & Zhou, Jianyu & Chen, Xia & Wen, Jinyu, 2023. "A time-coupling consideration for evaluation of load carrying capacity in district multi-energy systems," Applied Energy, Elsevier, vol. 351(C).
    19. Li, Hang & Hou, Kai & Xu, Xiandong & Jia, Hongjie & Zhu, Lewei & Mu, Yunfei, 2022. "Probabilistic energy flow calculation for regional integrated energy system considering cross-system failures," Applied Energy, Elsevier, vol. 308(C).
    20. Liu, Hong & Cao, Yuchen & Ge, Shaoyun & Xu, Zhengyang & Gu, Chenghong & He, Xingtang, 2022. "Load carrying capability of regional electricity-heat energy systems: Definitions, characteristics, and optimal value evaluation," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4381-:d:403709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.