IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4186-d398471.html
   My bibliography  Save this article

A Novel Multilevel DC-Link Three-Phase T-Type Inverter

Author

Listed:
  • Saddam Shueai Alnamer

    (Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • Saad Mekhilef

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    School of Software and Electrical Engineering, Swinburne, Victoria 3122, Australia
    Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Hazlie Mokhlis

    (Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Nadia M. L. Tan

    (Department of Electrical and Electronics Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

Abstract

This research proposes a four-level T-type inverter that is suitable for low-power applications. The presented topology outranks other types of inverters in terms of a smaller number of semiconductor devices, absence of passive components such as clamping diodes and flying capacitors, low switching and conduction losses, and high efficiency. The proposed topology is free from voltage deviation and unbalanced voltage occurrences that are present in other multilevel converters having clamping diodes or flying capacitors. The proposed inverter can extend to N levels using unequal dc-link voltage sources for medium-voltage application. The inverter employs the simple fundamental frequency staircase modulation technique. Moreover, this paper presents a current commutation strategy to prevent the occurrences of short circuit and minimizing the number of required switching devices and switching transitions, resulting in improving the efficiency of the inverter. This paper also analyses the theoretical converter losses showing lower switching and conduction losses when compared to existing four-level inverters. The experimental validation of the proposed inverter shows its operating feasibility and a low output voltage THD.

Suggested Citation

  • Saddam Shueai Alnamer & Saad Mekhilef & Hazlie Mokhlis & Nadia M. L. Tan, 2020. "A Novel Multilevel DC-Link Three-Phase T-Type Inverter," Energies, MDPI, vol. 13(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4186-:d:398471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhyaddin Rawa & Marif Daula Siddique & Saad Mekhilef & Noraisyah Mohamed Shah & Hussain Bassi & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2019. "Design and Implementation of a Hybrid Single T-Type Double H-Bridge Multilevel Inverter (STDH-MLI) Topology," Energies, MDPI, vol. 12(9), pages 1-15, May.
    2. Saddam Shueai Alnamer & Saad Mekhilef & Hazlie Bin Mokhlis, 2018. "A Four-Level T-Type Neutral Point Piloted Inverter for Solar Energy Applications," Energies, MDPI, vol. 11(6), pages 1-14, June.
    3. Azuwien Aida Bohari & Hui Hwang Goh & Agustiono Kurniawan Tonni & Sze Sing Lee & Sy Yi Sim & Kai Chen Goh & Chee Shen Lim & Yi Chen Luo, 2020. "Predictive Direct Power Control for Dual-Active-Bridge Multilevel Inverter Based on Conservative Power Theory," Energies, MDPI, vol. 13(11), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussain Mohammad Bassi & Zainal Salam, 2019. "A New Hybrid Multilevel Inverter Topology with Reduced Switch Count and dc Voltage Sources," Energies, MDPI, vol. 12(6), pages 1-15, March.
    2. Ibrahim Mohd Alsofyani & Kyo-Beum Lee, 2019. "Improved Deadbeat FC-MPC Based on the Discrete Space Vector Modulation Method with Efficient Computation for a Grid-Connected Three-Level Inverter System," Energies, MDPI, vol. 12(16), pages 1-18, August.
    3. Muhyaddin Rawa & Marif Daula Siddique & Saad Mekhilef & Noraisyah Mohamed Shah & Hussain Bassi & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2019. "Design and Implementation of a Hybrid Single T-Type Double H-Bridge Multilevel Inverter (STDH-MLI) Topology," Energies, MDPI, vol. 12(9), pages 1-15, May.
    4. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    5. Chandramouli Adupa & V. Sivachidambaranathan, 2022. "Critical analysis on cascaded T-type multilevel inverter topology to grid-integrated photovoltaic systems for symmetrical voltage ratios," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1474-1484, June.
    6. Ding, Yong & Mao, Meiqin & Chang, Liuchen, 2021. "Conservative power theory and its applications in modern smart grid: Review and prospect," Applied Energy, Elsevier, vol. 303(C).
    7. Patricio Gaisse & Javier Muñoz & Ariel Villalón & Rodrigo Aliaga, 2020. "Improved Predictive Control for an Asymmetric Multilevel Converter for Photovoltaic Energy," Sustainability, MDPI, vol. 12(15), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4186-:d:398471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.