IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3111-d257332.html
   My bibliography  Save this article

Improved Deadbeat FC-MPC Based on the Discrete Space Vector Modulation Method with Efficient Computation for a Grid-Connected Three-Level Inverter System

Author

Listed:
  • Ibrahim Mohd Alsofyani

    (Department of Electrical and Computer Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Korea)

  • Kyo-Beum Lee

    (Department of Electrical and Computer Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Korea)

Abstract

The utilization of three-level T-type (3L T-type) inverters in finite set-model predictive control (FS-MPC) of grid-connected systems yielded good performance in terms of current ripples and total harmonic distortions. To further improve the system’s performance, discrete space vector modulation (DSVM) was utilized to synthesize a higher number of virtual voltage vectors. A deadbeat control (DBC) method was used to alleviate the computational burden and provide the optimum voltage vector selection. However, 3L inverters are known to suffer from voltage deviation, owing to the imbalance of the neutral-point voltage. We have proposed a simplified control strategy for balancing the neutral point in the FS-MPC with DSVM and DBC of grid-connected systems, not requiring a weighting factor or additional cost function calculation. The effectiveness of the proposed method was validated using simulation and experiment results. Our experimental results show that the execution time of the proposed algorithm was significantly reduced, while its current quality performance was not affected.

Suggested Citation

  • Ibrahim Mohd Alsofyani & Kyo-Beum Lee, 2019. "Improved Deadbeat FC-MPC Based on the Discrete Space Vector Modulation Method with Efficient Computation for a Grid-Connected Three-Level Inverter System," Energies, MDPI, vol. 12(16), pages 1-18, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3111-:d:257332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anatolii Tcai & Ibrahim Mohd Alsofyani & In-Yong Seo & Kyo-Beum Lee, 2018. "DC-link Ripple Reduction in a DPWM-Based Two-Level VSI," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Saddam Shueai Alnamer & Saad Mekhilef & Hazlie Bin Mokhlis, 2018. "A Four-Level T-Type Neutral Point Piloted Inverter for Solar Energy Applications," Energies, MDPI, vol. 11(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karol Wróbel & Piotr Serkies & Krzysztof Szabat, 2020. "Model Predictive Base Direct Speed Control of Induction Motor Drive—Continuous and Finite Set Approaches," Energies, MDPI, vol. 13(5), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silpa Baburajan & Haoran Wang & Dinesh Kumar & Qian Wang & Frede Blaabjerg, 2021. "DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems," Energies, MDPI, vol. 14(14), pages 1-17, July.
    2. Hussain Mohammad Bassi & Zainal Salam, 2019. "A New Hybrid Multilevel Inverter Topology with Reduced Switch Count and dc Voltage Sources," Energies, MDPI, vol. 12(6), pages 1-15, March.
    3. Muhyaddin Rawa & Marif Daula Siddique & Saad Mekhilef & Noraisyah Mohamed Shah & Hussain Bassi & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2019. "Design and Implementation of a Hybrid Single T-Type Double H-Bridge Multilevel Inverter (STDH-MLI) Topology," Energies, MDPI, vol. 12(9), pages 1-15, May.
    4. Saddam Shueai Alnamer & Saad Mekhilef & Hazlie Mokhlis & Nadia M. L. Tan, 2020. "A Novel Multilevel DC-Link Three-Phase T-Type Inverter," Energies, MDPI, vol. 13(16), pages 1-20, August.
    5. Xuefeng Jin & Jiahao Liu & Wei Chen & Tingna Shi, 2023. "Optimized Synchronous Pulse Width Modulation Strategy Based on Discontinuous Carriers," Energies, MDPI, vol. 16(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3111-:d:257332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.