IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3957-d393264.html
   My bibliography  Save this article

An Economic and Technology Analysis of a New High-Efficiency Biomass Cogeneration System: A Case Study in DC County, China

Author

Listed:
  • Hui Huang

    (School of Management, China University of Mining & Technology, Beijing 100083, China)

  • Xiaoli Yan

    (School of Management, China University of Mining & Technology, Beijing 100083, China)

  • Shizhong Song

    (Collaborative Innovation Research Office, Science and Technology Innovation Research Center, Beijing 100012, China)

  • Yingying Du

    (School of Management, China University of Mining & Technology, Beijing 100083, China)

  • Yanlei Guo

    (School of Management, China University of Mining & Technology, Beijing 100083, China)

Abstract

Biomass is the fourth largest energy source in the world; it is easy to store and can be converted into various kinds of renewable energies. The biomass cogeneration system is an important way to utilize biomass energy, especially in northern China. At present, there are many problems in biomass power plants in China, such as high latent heat loss of chimney and cooling towers, low power generation efficiency, and thermal efficiency. In order to solve this problem, this paper introduces low vacuum circulating water heating technology in the biomass cogeneration system, and expounds the differences between China and Western countries in biomass power plants. Based on this background, the technology is redesigned and reformed to make it more suitable for the biomass fuel varieties in the power plant location, and realize the localization of technology and the expansion of scale. The application of this improved technology in China’s biomass cogeneration project is analyzed. Based on the biomass cogeneration project in the DC County of China, the analysis confirms that the designed low vacuum circulating water heating technology is suitable for biomass power generation projects with agricultural and forestry wastes as raw materials, and its application can greatly improve the heat utilization efficiency of the whole cogeneration system. At the same time, in order to estimate the possibility of profitable investment when the key financial parameters change, the financial risk is analyzed. The results show that the probability of 90% net present value (NPV) in 15 years is between 355.28 million RMB and 623.96 million RMB, and the internal rate of return can reach 17.7%.

Suggested Citation

  • Hui Huang & Xiaoli Yan & Shizhong Song & Yingying Du & Yanlei Guo, 2020. "An Economic and Technology Analysis of a New High-Efficiency Biomass Cogeneration System: A Case Study in DC County, China," Energies, MDPI, vol. 13(15), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3957-:d:393264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Bangzhu & Ye, Shunxin & Jiang, Minxing & Wang, Ping & Wu, Zhanchi & Xie, Rui & Chevallier, Julien & Wei, Yi-Ming, 2019. "Achieving the carbon intensity target of China: A least squares support vector machine with mixture kernel function approach," Applied Energy, Elsevier, vol. 233, pages 196-207.
    2. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    3. Li, Hailong & Wang, Bin & Yan, Jinying & Salman, Chaudhary Awais & Thorin, Eva & Schwede, Sebastian, 2019. "Performance of flue gas quench and its influence on biomass fueled CHP," Energy, Elsevier, vol. 180(C), pages 934-945.
    4. Wang, P. & Li, J.B. & Bai, F.W. & Liu, D.Y. & Xu, C. & Zhao, L. & Wang, Z.F., 2017. "Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver," Energy, Elsevier, vol. 119(C), pages 652-661.
    5. Wang, Gang & Wang, Fasi & Shen, Fan & Jiang, Tieliu & Chen, Zeshao & Hu, Peng, 2020. "Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 146(C), pages 2351-2361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guobin Cao & Hua Qin & Rajan Ramachandran & Bo Liu, 2019. "Solar Concentrator Consisting of Multiple Aspheric Reflectors," Energies, MDPI, vol. 12(21), pages 1-14, October.
    2. Wang, Gang & Dong, Boyi & Chen, Zeshao, 2021. "Design and behaviour estimate of a novel concentrated solar-driven power and desalination system using S–CO2 Brayton cycle and MSF technology," Renewable Energy, Elsevier, vol. 176(C), pages 555-564.
    3. Wang, Gang & Bai, Long & Chao, Yuechao & Chen, Zeshao, 2023. "How do solar photovoltaic and wind power promote the joint poverty alleviation and clean energy development: An evolutionary game theoretic study," Renewable Energy, Elsevier, vol. 218(C).
    4. Duan, Zongxian & An, Wei, 2022. "Promote optical performance of linear Fresnel micro-concentrator by an offset-axis mirror layout in building-integrated PV/T application," Renewable Energy, Elsevier, vol. 200(C), pages 1047-1058.
    5. Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
    6. Wang, Gang & Wang, Cheng & Chen, Zeshao & Hu, Peng, 2020. "Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle," Energy, Elsevier, vol. 197(C).
    7. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    8. Jiang, Yi & Lv, Mingyun & Wang, Chuanzhi & Meng, Xiangrui & Ouyang, Siyue & Wang, Guodong, 2021. "Layout optimization of stratospheric balloon solar array based on energy production," Energy, Elsevier, vol. 229(C).
    9. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    11. Diogo Cabral & Abolfazl Hayati & João Gomes & Hossein Afzali Gorouh & Pouriya Nasseriyan & Mazyar Salmanzadeh, 2023. "Experimental Electrical Assessment Evaluation of a Vertical n-PERT Half-Size Bifacial Solar Cell String Receiver on a Parabolic Trough Solar Collector," Energies, MDPI, vol. 16(4), pages 1-21, February.
    12. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Yu, Haiyan & Zhang, Haochun & Buahom, Piyapong & Liu, Jing & Xia, Xinlin & Park, Chul B., 2021. "Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors," Energy, Elsevier, vol. 233(C).
    14. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    15. Qiu, Huichong & Liu, Hui & Xia, Qi & Lin, Zihan & Chen, Chen, 2024. "A spectral splitting CPV/T hybrid system based on wave-selecting filter coated compound parabolic concentrator and linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 226(C).
    16. Wang, Jikang & Zhang, Yuanting & Zhang, Weichen & Qiu, Yu & Li, Qing, 2022. "Design and evaluation of a lab-scale tungsten receiver for ultra-high-temperature solar energy harvesting," Applied Energy, Elsevier, vol. 327(C).
    17. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    18. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    19. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    20. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3957-:d:393264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.