IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3736-d387015.html
   My bibliography  Save this article

Numerical Analysis of Thermal Behaviour of DC Fuse

Author

Listed:
  • Adrian Plesca

    (Faculty of Electrical Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. Dimitrie Mangeron, 21-23, 700050 Iasi, Romania)

Abstract

One of the very well-known protections for electrical apparatus against overloads or short circuits is the fuse. It can be used to protect both AC or DC electrical installations and it has also proven its effectiveness in the protection of different loads. This paper describes a three-dimensional model of a DC fuse with two different types of fuselink notches: circular and rhombic. The obtained 3D thermal model can be used to investigate the thermal behaviour of DC fuses in both steady-state and transient conditions at different values of overloads or short circuits. With the aim to validate the proposed 3D thermal model, a series of experimental tests have been achieved. The thermal simulated values are in good concordance with the experimental results (a relative error less than ±6% has been obtained between experimental and simulation data).

Suggested Citation

  • Adrian Plesca, 2020. "Numerical Analysis of Thermal Behaviour of DC Fuse," Energies, MDPI, vol. 13(14), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3736-:d:387015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jayamaha, D.K.J.S. & Lidula, N.W.A. & Rajapakse, A.D., 2020. "Protection and grounding methods in DC microgrids: Comprehensive review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Szulborski & Sebastian Łapczyński & Łukasz Kolimas & Łukasz Kozarek & Desire Dauphin Rasolomampionona & Tomasz Żelaziński & Adam Smolarczyk, 2021. "Transient Thermal Analysis of NH000 gG 100A Fuse Link Employing Finite Element Method," Energies, MDPI, vol. 14(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Navid Bayati & Mehdi Savaghebi, 2021. "Protection Systems for DC Shipboard Microgrids," Energies, MDPI, vol. 14(17), pages 1-20, August.
    2. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    3. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Srivastava, Chetan & Tripathy, Manoj, 2021. "DC microgrid protection issues and schemes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Mishra, Manohar & Patnaik, Bhaskar & Biswal, Monalisa & Hasan, Shazia & Bansal, Ramesh C., 2022. "A systematic review on DC-microgrid protection and grounding techniques: Issues, challenges and future perspective," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3736-:d:387015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.