IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3673-d385464.html
   My bibliography  Save this article

Recloser-Based Decentralized Control of the Grid with Distributed Generation in the Lahsh District of the Rasht Grid in Tajikistan, Central Asia

Author

Listed:
  • Anvari Ghulomzoda

    (Department of Automated Electric Power Systems, Novosibirsk State Technical University, Novosibirsk 630073, Russia)

  • Aminjon Gulakhmadov

    (Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Ministry of Energy and Water Resources of the Republic of Tajikistan, Dushanbe 734064, Tajikistan)

  • Alexander Fishov

    (Department of Automated Electric Power Systems, Novosibirsk State Technical University, Novosibirsk 630073, Russia)

  • Murodbek Safaraliev

    (Department of Automated Electrical Systems, Ural Federal University, Ekaterinburg 620002, Russia)

  • Xi Chen

    (Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

  • Khusrav Rasulzoda

    (Andritz Hydro GmbH, Vienna 1120, Austria)

  • Kamol Gulyamov

    (Department of Electric Drive and Electric Machines, Tajik Technical University named after Academic M. S. Osimi, Dushanbe 734042, Tajikistan)

  • Javod Ahyoev

    (Department of Electric Power Station, Tajik Technical University named after Academic M. S. Osimi, Dushanbe 734042, Tajikistan)

Abstract

Small-scale power generation based on renewable energy sources is gaining popularity in distribution grids, creating new challenges for power system control. At the same time, remote consumers with their own small-scale generation still have low reliability of power supply and poor power quality, due to the lack of proper technology for grid control when the main power supply is lost. Today, there is a global trend in the transition from a power supply with centralized control to a decentralized one, which has led to the Microgrid concept. A microgrid is an intelligent automated system that can reconfigure by itself, maintain the power balance, and distribute power flows. The main purpose of this paper is to study the method of control using reclosers in the Lahsh district of the Rasht grid in Tajikistan with distributed small generation. Based on modified reclosers, a method of decentralized synchronization and restoration of the grid normal operation after the loss of the main power source was proposed. In order to assess the stable operation of small hydropower plants under disturbances, the transients caused by proactive automatic islanding (PAI) and restoration of the interconnection between the microgrid and the main grid are shown. Rustab software, as one of the multifunctional software applications in the field of power systems transients study, was used for simulation purposes. Based on the simulation results, it can be concluded that under disturbances, the proposed method had a positive effect on the stability of small hydropower plants, which are owned and dispatched by the Rasht grid. Moreover, the proposed method sufficiently ensures the quality of the supplied power and improves the reliability of power supply in the Lahsh district of Tajikistan.

Suggested Citation

  • Anvari Ghulomzoda & Aminjon Gulakhmadov & Alexander Fishov & Murodbek Safaraliev & Xi Chen & Khusrav Rasulzoda & Kamol Gulyamov & Javod Ahyoev, 2020. "Recloser-Based Decentralized Control of the Grid with Distributed Generation in the Lahsh District of the Rasht Grid in Tajikistan, Central Asia," Energies, MDPI, vol. 13(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3673-:d:385464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3673/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris V. Malozyomov & Nikita V. Martyushev & Elena V. Voitovich & Roman V. Kononenko & Vladimir Yu. Konyukhov & Vadim Tynchenko & Viktor Alekseevich Kukartsev & Yadviga Aleksandrovna Tynchenko, 2023. "Designing the Optimal Configuration of a Small Power System for Autonomous Power Supply of Weather Station Equipment," Energies, MDPI, vol. 16(13), pages 1-30, June.
    2. Vadim Manusov & Svetlana Beryozkina & Muso Nazarov & Murodbek Safaraliev & Inga Zicmane & Pavel Matrenin & Anvari Ghulomzoda, 2022. "Optimal Management of Energy Consumption in an Autonomous Power System Considering Alternative Energy Sources," Mathematics, MDPI, vol. 10(3), pages 1-17, February.
    3. Alexander Fishov & Anatoly Osintsev & Anvari Ghulomzoda & Andrey Marchenko & Sergey Kokin & Murodbek Safaraliev & Stepan Dmitriev & Inga Zicmane, 2023. "Decentralized Emergency Control of AC Power Grid Modes with Distributed Generation," Energies, MDPI, vol. 16(15), pages 1-22, July.
    4. Guilherme Gonçalves Pinheiro & Carlos Henrique da Silva & Bruno P. B. Guimarães & Robson Bauwelz Gonzatti & Rondineli Rodrigues Pereira & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Joselino Sant, 2022. "Power Flow Control Using Series Voltage Source Converters in Distribution Grids," Energies, MDPI, vol. 15(9), pages 1-22, May.
    5. Saidjon Shiralievich Tavarov & Pavel Matrenin & Murodbek Safaraliev & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Forecasting of Electricity Consumption by Household Consumers Using Fuzzy Logic Based on the Development Plan of the Power System of the Republic of Tajikistan," Sustainability, MDPI, vol. 15(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3673-:d:385464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.