IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3182-d373652.html
   My bibliography  Save this article

Applicability of Swaging as an Alternative for the Fabrication of Accident-Tolerant Fuel Cladding

Author

Listed:
  • Dae Yun Kim

    (Department of Materials Science and Engineering, Gachon University, Gyeonggi-do 13120, Korea)

  • You Na Lee

    (Department of Materials Science and Engineering, Gachon University, Gyeonggi-do 13120, Korea)

  • Joon Han Kim

    (SFR Nuclear Fuel Development Division, Korea Atomic Energy Research Institute, Daejeon 34507, Korea)

  • Yonghee Kim

    (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)

  • Young Soo Yoon

    (Department of Materials Science and Engineering, Gachon University, Gyeonggi-do 13120, Korea)

Abstract

We suggest an alternative to conventional coating methods for accident-tolerant fuel (ATF) cladding. A Zircaloy-4 tube was inserted into metal tubes of different materials and the inserted tubes were subjected to physical force at room temperature. The manufactured tube exhibited a pseudo-single tube (PST) structure and had higher thermal stability than a Zircaloy-4 tube. Optical microscopy and scanning electron microscopy images showed that the PST had a uniform and well-bonded interface structure, i.e., no gaps or voids were found at the interface between the inner and outer tubes. Energy-dispersive X-ray spectroscopy analysis confirmed that the metal components did not interdiffuse at the interface of the PST, even after being kept at 600 and 900 °C for 1 h and rapidly cooled to room temperature. Unlike pure Zircaloy-4 tubes, Zircaloy-4/stainless use steel (SUS) 316 PST did not show significant structural collapse, even after being stored at 1200 °C for 1 h. Based on these results, if a PST was fabricated using a Zircaloy-4 tube thinner than the Zircaloy-4 tube used in this study and an outer tube of micron-scale thickness, swaging may be a feasible alternative to Zircaloy-4-based ATF cladding.

Suggested Citation

  • Dae Yun Kim & You Na Lee & Joon Han Kim & Yonghee Kim & Young Soo Yoon, 2020. "Applicability of Swaging as an Alternative for the Fabrication of Accident-Tolerant Fuel Cladding," Energies, MDPI, vol. 13(12), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3182-:d:373652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Becattini, Viola & Motmans, Thomas & Zappone, Alba & Madonna, Claudio & Haselbacher, Andreas & Steinfeld, Aldo, 2017. "Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage," Applied Energy, Elsevier, vol. 203(C), pages 373-389.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan CK Tam & Brian Agnew, 2020. "Thermal Systems—An Overview," Energies, MDPI, vol. 14(1), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    2. Gong, Mei & Ottermo, Fredric, 2022. "High-temperature thermal storage in combined heat and power plants," Energy, Elsevier, vol. 252(C).
    3. Lola Yesares & José María González-Jiménez & Francisco Abel Jiménez-Cantizano & Igor González-Pérez & David Caro-Moreno & Isabel María Sánchez, 2023. "Unveiling High-Tech Metals in Roasted Pyrite Wastes from the Iberian Pyrite Belt, SW Spain," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    4. Fatih Selimefendigil & Ceylin Şirin & Hakan F. Öztop, 2022. "Experimental Performance Analysis of a Solar Desalination System Modified with Natural Dolomite Powder Integrated Latent Heat Thermal Storage Unit," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    5. Andrew Swingler & Matthew Hall, 2018. "Initial Comparison of Lithium Battery and High-Temperature Thermal-Turbine Electricity Storage for 100% Wind and Solar Electricity Supply on Prince Edward Island," Energies, MDPI, vol. 11(12), pages 1-12, December.
    6. Haitham M. Ahmed & Hussin A. M. Ahmed & Sefiu O. Adewuyi, 2021. "Characterization of Microschist Rocks under High Temperature at Najran Area of Saudi Arabia," Energies, MDPI, vol. 14(22), pages 1-20, November.
    7. Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
    8. Guokai Zhao & Yaoqing Hu & Peihua Jin, 2020. "Exploratory Experimental Study on the Mechanical Properties of Granite Subjected to Cyclic Temperature and Uniaxial Stress," Energies, MDPI, vol. 13(8), pages 1-17, April.
    9. Ortega-Fernández, Iñigo & Hernández, Ana Belén & Wang, Yang & Bielsa, Daniel, 2021. "Performance assessment of an oil-based packed bed thermal energy storage unit in a demonstration concentrated solar power plant," Energy, Elsevier, vol. 217(C).
    10. Petros Petrounias & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Maria Kalpogiannaki & Petros Koutsovitis & Maria-Elli Damoulianou & Nikolaos Koukouzas, 2020. "Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece)," Energies, MDPI, vol. 13(5), pages 1-21, March.
    11. Becattini, V. & Haselbacher, A., 2019. "Toward a new method for the design of combined sensible/latent thermal-energy storage using non-dimensional analysis," Applied Energy, Elsevier, vol. 247(C), pages 322-334.
    12. Abuşka, Mesut & Şevik, Seyfi & Kayapunar, Arif, 2019. "Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder," Renewable Energy, Elsevier, vol. 143(C), pages 34-46.
    13. Erika Garitaonandia & Peru Arribalzaga & Ibon Miguel & Daniel Bielsa, 2024. "Characterization of the Ratcheting Effect on the Filler Material of a Steel Slag-Based Thermal Energy Storage," Energies, MDPI, vol. 17(7), pages 1-16, March.
    14. Takasu, Hiroki & Hoshino, Hitoshi & Tamura, Yoshiro & Kato, Yukitaka, 2019. "Performance evaluation of thermochemical energy storage system based on lithium orthosilicate and zeolite," Applied Energy, Elsevier, vol. 240(C), pages 1-5.
    15. Kai Cui & Chengjun Wang & Li Li & Jungang Zou & Weihong Huang & Zhongzhi Zhang & Heming Wang & Kun Guo, 2022. "Controlling the Hydro-Swelling of Smectite Clay Minerals by Fe(III) Reducing Bacteria for Enhanced Oil Recovery from Low-Permeability Reservoirs," Energies, MDPI, vol. 15(12), pages 1-14, June.
    16. Zhang, Lin & Yang, Daoxue & Zhao, Kui & Zhao, Yunge & Jin, Jiefang & Wang, Xiaojun & Zhu, Longji & Wang, Xing & Li, Congming, 2024. "Investigation of high-temperature effects on the strengthening and degradation of mechanical property in sandstone," Applied Energy, Elsevier, vol. 357(C).
    17. Roos, Philipp & Haselbacher, Andreas, 2021. "Thermocline control through multi-tank thermal-energy storage systems," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3182-:d:373652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.