IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2997-d369823.html
   My bibliography  Save this article

Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification

Author

Listed:
  • Metin Gül

    (Engineering of Electrical and Electronics, Balıkesir University Institute of Science, 10154 Balıkesir, Turkey)

  • Ersin Akyüz

    (Electronics and Automation, Balıkesir University Vocational School, 10154 Balıkesir, Turkey)

Abstract

In this study, the electrical, electrochemical and thermodynamic performance of a PV/T electrolyzer system was investigated, and the experimental results were verified with a numerical model. The annual amounts of electrical and thermal energy from the PV/T electrolyzer system were calculated as 556.8 kWh and 1912 kWh, respectively. In addition, the hydrogen production performance for the PV/T electrolyzer was compared with that of a PV electrolyzer system. The amount of hydrogen was calculated as 3.96 kg annually for the PV system, while this value was calculated as 4.49 kg for the PV/T system. Furthermore, the amount of hydrogen production was calculated as 4.59 kg for a 65 °C operation temperature. The electrical, thermal and total energy efficiencies of the PV/T system, which were obtained hourly on a daily basis, were calculated and varied between 12–13.8%, 36.1–45.2% and 49.1–58.4%, respectively. The hourly exergy analyses were also carried out on a daily basis and the results showed that the exergy efficiencies changed between 13.8–14.32%. The change in the electrolysis voltage was investigated by changing the current and temperature in the ranges of 200–1600 mA/cm 2 A and 30–65 °C, respectively. While the current and the water temperature varied in the ranges of 400–2350 mA/cm 2 and 28.1–45.8 °C respectively, energy efficiency and exergy efficiency were in the ranges of 57.85–69.45% and 71.1–79.7%, respectively.

Suggested Citation

  • Metin Gül & Ersin Akyüz, 2020. "Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification," Energies, MDPI, vol. 13(11), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2997-:d:369823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    2. Oruc, Muhammed E. & Desai, Amit V. & Kenis, Paul J.A. & Nuzzo, Ralph G., 2016. "Comprehensive energy analysis of a photovoltaic thermal water electrolyzer," Applied Energy, Elsevier, vol. 164(C), pages 294-302.
    3. Jin-Hee Kim & Jong-Gwon Ahn & Jun-Tae Kim, 2016. "Demonstration of the Performance of an Air-Type Photovoltaic Thermal (PVT) System Coupled with a Heat-Recovery Ventilator," Energies, MDPI, vol. 9(9), pages 1-15, September.
    4. Thipjak Nualboonrueng & Pongpith Tuenpusa & Yuki Ueda & Atsushi Akisawa, 2012. "Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok," Energies, MDPI, vol. 5(4), pages 1-16, April.
    5. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "Performance Evaluation of PV/T Air Collector Having a Single-Pass Double-Flow Air Channel and Non-Uniform Cross-Section Transverse Rib," Energies, MDPI, vol. 13(9), pages 1-13, May.
    6. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    7. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2017. "Experimental and Numerical Analyses of a Flat Plate Photovoltaic/Thermal Solar Collector," Energies, MDPI, vol. 10(4), pages 1-21, April.
    8. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    9. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    10. Ni, Meng & Leung, Michael K.H. & Leung, Dennis Y.C. & Sumathy, K., 2007. "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 401-425, April.
    11. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo & Panagopoulos, Orestis, 2019. "Photovoltaic thermal collectors: Experimental analysis and simulation model of an innovative low-cost water-based prototype," Energy, Elsevier, vol. 179(C), pages 502-516.
    12. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    4. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    5. Abdelhamid, Mahmoud & Widyolar, Bennett K. & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2016. "Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector," Applied Energy, Elsevier, vol. 182(C), pages 68-79.
    6. Hussain, F. & Othman, M.Y.H & Sopian, K. & Yatim, B. & Ruslan, H. & Othman, H., 2013. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 431-441.
    7. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    8. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    9. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part I – Fundamentals, design considerations and current technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1500-1565.
    10. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    11. Mojumder, Juwel Chandra & Ong, Hwai Chyuan & Chong, Wen Tong & Izadyar, Nima & Shamshirband, Shahaboddin, 2017. "The intelligent forecasting of the performances in PV/T collectors based on soft computing method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1366-1378.
    12. Pedro Orgeira-Crespo & Carlos Ulloa & José M. Núñez & José A. Pérez, 2020. "Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars," Energies, MDPI, vol. 13(11), pages 1-15, June.
    13. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    14. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    15. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    16. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "Performance Evaluation of PV/T Air Collector Having a Single-Pass Double-Flow Air Channel and Non-Uniform Cross-Section Transverse Rib," Energies, MDPI, vol. 13(9), pages 1-13, May.
    17. Abdelrazik, Ahmed S. & Al-Sulaiman, FA & Saidur, R. & Ben-Mansour, R., 2018. "A review on recent development for the design and packaging of hybrid photovoltaic/thermal (PV/T) solar systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 110-129.
    18. Huan-Liang Tsai, 2014. "Design and Evaluation of a Photovoltaic/Thermal-Assisted Heat Pump Water Heating System," Energies, MDPI, vol. 7(5), pages 1-20, May.
    19. Evgeny Solomin & Shanmuga Priya Selvanathan & Sudhakar Kumarasamy & Anton Kovalyov & Ramyashree Maddappa Srinivasa, 2021. "The Comparison of Solar-Powered Hydrogen Closed-Cycle System Capacities for Selected Locations," Energies, MDPI, vol. 14(9), pages 1-18, May.
    20. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2997-:d:369823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.