IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i4p1229-1244d17351.html
   My bibliography  Save this article

Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok

Author

Listed:
  • Thipjak Nualboonrueng

    (Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan)

  • Pongpith Tuenpusa

    (Rajamangala University of Technology, 39 Muh1, Rangsit-Nakhonnayok Road, Klong Hok, Thanyaburi Pathum Thani, 12110, Thailand)

  • Yuki Ueda

    (Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan)

  • Atsushi Akisawa

    (Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan)

Abstract

This study presents experimental results on Photovoltaic-thermal (PVT) solar systems, the commercial photovoltaic (PV) panels used as solar absorbers in PVT collectors, which are amorphous and multi-crystalline silicon. Testing was done with outdoor experiments in the climate of Bangkok corresponding to energy consumption behavior of medium size Thai families. The experimental results show that the thermal recovery of amorphous silicon PVT collector is almost the same as that of multi-crystalline silicon PVT collectors while electricity generation of multi crystalline silicon PVT is 1.2 times as much as that of amorphous silicon PVT. The maximum of heat gain from the PVT systems were obtained in March in summer. It was found that PVT collectors of unit area annually produced 1.1 × 10 3 kWh/m 2 .year of heat and 55–83 kWh/m 2 .year of electricity, respectively. The results show that annual average solar factor of hot water supply is 0.45 for unit collector area. Economical evaluation based on energy costs in Thailand was conducted, which estimated the payback time would be 7 and 14 years for a-Si PVT and mc-Si PV, respectively.

Suggested Citation

  • Thipjak Nualboonrueng & Pongpith Tuenpusa & Yuki Ueda & Atsushi Akisawa, 2012. "Field Experiments of PV-Thermal Collectors for Residential Application in Bangkok," Energies, MDPI, vol. 5(4), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:4:p:1229-1244:d:17351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/4/1229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/4/1229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adsten, M & Perers, B & Wäckelgård, E, 2002. "The influence of climate and location on collector performance," Renewable Energy, Elsevier, vol. 25(4), pages 499-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "Performance Evaluation of PV/T Air Collector Having a Single-Pass Double-Flow Air Channel and Non-Uniform Cross-Section Transverse Rib," Energies, MDPI, vol. 13(9), pages 1-13, May.
    2. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Metin Gül & Ersin Akyüz, 2020. "Hydrogen Generation from a Small-Scale Solar Photovoltaic Thermal (PV/T) Electrolyzer System: Numerical Model and Experimental Verification," Energies, MDPI, vol. 13(11), pages 1-20, June.
    4. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    5. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    6. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    7. Li, Jing & Ren, Xiao & Yuan, Weiqi & Li, Zhaomeng & Pei, Gang & Su, Yuehong & Kutlu, Çağrı & Ji, Jie & Riffat, Saffa, 2018. "Experimental study on a novel photovoltaic thermal system using amorphous silicon cells deposited on stainless steel," Energy, Elsevier, vol. 159(C), pages 786-798.
    8. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2017. "Experimental and Numerical Analyses of a Flat Plate Photovoltaic/Thermal Solar Collector," Energies, MDPI, vol. 10(4), pages 1-21, April.
    9. Madalina Barbu & George Darie & Monica Siroux, 2019. "Analysis of a Residential Photovoltaic-Thermal (PVT) System in Two Similar Climate Conditions," Energies, MDPI, vol. 12(19), pages 1-18, September.
    10. Yang, Xiaojiao & Sun, Liangliang & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling, 2018. "Experimental investigation on performance comparison of PV/T-PCM system and PV/T system," Renewable Energy, Elsevier, vol. 119(C), pages 152-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Román, Franz & Nagle, Marcus & Leis, Hermann & Janjai, Serm & Mahayothee, Busarakorn & Haewsungcharoen, Methinee & Müller, Joachim, 2009. "Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand," Renewable Energy, Elsevier, vol. 34(7), pages 1661-1667.
    2. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    3. Esteban Zalamea-Leon & Edgar A. Barragán-Escandón & John Calle-Sigüencia & Mateo Astudillo-Flores & Diego Juela-Quintuña, 2021. "Residential Solar Thermal Performance Considering Self-Shading Incidence between Tubes in Evacuated Tube and Flat Plate Collectors," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    4. Shahbaz Nasir Khan & Muhammad Shahzaib, 2022. "Energy Efficient Building Design: Timber Frame Construction Based In Hemp Fiber Insulation," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 6(1), pages 31-33, October.
    5. Muhammad Azhar Ali & Tabish Hassan, 2022. "Value Addition Of Grapes Using Hot Air Dryers," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 6(1), pages 19-24, February.
    6. Sharma, Ashish K. & Sharma, Chandan & Mullick, Subhash C. & Kandpal, Tara C., 2017. "Solar industrial process heating: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 124-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:4:p:1229-1244:d:17351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.