IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2987-d369608.html
   My bibliography  Save this article

Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation

Author

Listed:
  • Katarzyna Gładyszewska-Fiedoruk

    (Department of HVAC Engineering, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland)

  • Tomasz Janusz Teleszewski

    (Department of HVAC Engineering, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland)

Abstract

This paper presents research on humidity in a passenger car cabin with the use of supply ventilation without cooling the air. Based on the tests carried out and the humidity balance in the car, a model was developed for changing the humidity in the passenger car cabin as a function of time. The study of thermohumid conditions was carried out in two passenger cars. During the tests, the heating and cooling functions were turned off. The relative humidity and temperature were measured outside the car before and after driving the car and in the supply air duct and inside the passenger car cabin while driving the car. The tests were carried out for an average temperature range from 20 to 42.9 °C. In order to develop a model of humidity changes as a function of time, a humidity balance was prepared. Human-generated humidity in the car cabin depends mainly on the temperature inside the car and the age of the person and can range from 20 to 180 g/(h × person) for an adult in the temperature range of 20–43 °C, while for a child under six years old the humidity ranges from 8 to 19.5 g/(h × person) in the temperature range 22–34 °C. A formula of humidity generated by an adult and a child aged six years old was obtained as a function of temperature inside a passenger car. Based on the experimental research and the model developed, the humidity generated by a single adult and a six-year-old child in the car was determined. The developed model can be used in the automatic airflow adjustment systems in passenger cars.

Suggested Citation

  • Katarzyna Gładyszewska-Fiedoruk & Tomasz Janusz Teleszewski, 2020. "Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation," Energies, MDPI, vol. 13(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2987-:d:369608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pouria Bahramnia & Seyyed Mohammad Hosseini Rostami & Jin Wang & Gwang-jun Kim, 2019. "Modeling and Controlling of Temperature and Humidity in Building Heating, Ventilating, and Air Conditioning System Using Model Predictive Control," Energies, MDPI, vol. 12(24), pages 1-24, December.
    2. Zhi Yang & Zhengwei Long & Guangwen Wang, 2019. "Fast Heating Model for the Aircraft Cabin Air," Energies, MDPI, vol. 12(18), pages 1-12, September.
    3. Shui Yu & Yumeng Cui & Yifei Shao & Fuhong Han, 2019. "Simulation Research on the Effect of Coupled Heat and Moisture Transfer on the Energy Consumption and Indoor Environment of Public Buildings," Energies, MDPI, vol. 12(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Surya Michrandi Nasution & Emir Husni & Kuspriyanto Kuspriyanto & Rahadian Yusuf & Bernardo Nugroho Yahya, 2021. "Contextual Route Recommendation System in Heterogeneous Traffic Flow," Sustainability, MDPI, vol. 13(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Cabeza-Prieto & María Soledad Camino-Olea & María Ascensión Rodríguez-Esteban & Alfredo Llorente-Álvarez & María Paz Sáez Pérez, 2020. "Moisture Influence on the Thermal Operation of the Late 19th Century Brick Facade, in a Historic Building in the City of Zamora," Energies, MDPI, vol. 13(6), pages 1-14, March.
    2. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    3. Lijun Gao & Yunze Li & Huijuan Xu & Xin Zhang & Man Yuan & Xianwen Ning, 2019. "Numerical Investigation on Heat-Transfer and Hydromechanical Performance inside Contaminant-Insensitive Sublimators under a Vacuum Environment for Spacecraft Applications," Energies, MDPI, vol. 12(23), pages 1-21, November.
    4. Wang, Kung-Jeng & Lin, Chiuhsiang Joe & Dagne, Teshome Bekele & Woldegiorgis, Bereket Haile, 2022. "Bilayer stochastic optimization model for smart energy conservation systems," Energy, Elsevier, vol. 247(C).
    5. Giovanni Bianco & Stefano Bracco & Federico Delfino & Lorenzo Gambelli & Michela Robba & Mansueto Rossi, 2020. "A Building Energy Management System Based on an Equivalent Electric Circuit Model," Energies, MDPI, vol. 13(7), pages 1-23, April.
    6. Thyago Estrabis & Gabriel Gentil & Raymundo Cordero, 2021. "Development of a Resolver-to-Digital Converter Based on Second-Order Difference Generalized Predictive Control," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Florin-Emilian Țurcanu & Cătălin-George Popovici & Marina Verdeș & Vasilică Ciocan & Sebastian-Valeriu Hudișteanu, 2020. "Indoor Climate Modelling and Economic Analysis Regarding the Energetic Rehabilitation of a Church," Energies, MDPI, vol. 13(11), pages 1-15, June.
    8. Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
    9. Mpho J. Lencwe & SP Daniel Chowdhury & Sipho Mahlangu & Maxwell Sibanyoni & Louwrance Ngoma, 2021. "An Efficient HVAC Network Control for Safety Enhancement of a Typical Uninterrupted Power Supply Battery Storage Room," Energies, MDPI, vol. 14(16), pages 1-23, August.
    10. Li, Hangxin & Wang, Shengwei, 2022. "Comparative assessment of alternative MPC strategies using real meteorological data and their enhancement for optimal utilization of flexibility-resources in buildings," Energy, Elsevier, vol. 244(PA).
    11. Ali Saberi Derakhtenjani & Andreas K. Athienitis, 2021. "Model Predictive Control Strategies to Activate the Energy Flexibility for Zones with Hydronic Radiant Systems," Energies, MDPI, vol. 14(4), pages 1-19, February.
    12. Marcela Brauner & Nicola Naismith & Ali GhaffarianHoseini, 2021. "System Approach in Complex Integral Design Methodology and Its Application in New Zealand," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
    13. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2987-:d:369608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.