IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1307-d331364.html
   My bibliography  Save this article

Moisture Influence on the Thermal Operation of the Late 19th Century Brick Facade, in a Historic Building in the City of Zamora

Author

Listed:
  • Alejandro Cabeza-Prieto

    (E.T.S. de Arquitectura, Universidad de Valladolid, avda Salamanca, 18, 47014 Valladolid, Spain)

  • María Soledad Camino-Olea

    (E.T.S. de Arquitectura, Universidad de Valladolid, avda Salamanca, 18, 47014 Valladolid, Spain)

  • María Ascensión Rodríguez-Esteban

    (Campus Viriato, Universidad de Salamanca, avda Cardenal Cisneros, 34, 49001 Zamora, Spain)

  • Alfredo Llorente-Álvarez

    (E.T.S. de Arquitectura, Universidad de Valladolid, avda Salamanca, 18, 47014 Valladolid, Spain)

  • María Paz Sáez Pérez

    (Campus Fuentenueva, Departamento de Construcciones Arquitectónicas, Universidad de Granada, calle Severo Ochoa, s/n; 18071 Granada, Spain)

Abstract

To improve the energy performance of restored cultural heritage buildings, it is necessary to know the real values of thermal conductivity of its envelope, mainly of the facades, and to study an intervention strategy that does not interfere with the preservation of their cultural and architectural values. The brick walls with which a large number of these buildings were constructed, usually absorb water, leading to their deterioration, whereas the heat transmission through them is much higher (than when they are dry). This aspect is often not taken into account when making interventions to improve the energy efficiency of these buildings, which makes them ineffective. This article presents the results of an investigation that analyzes thermal behavior buildings of the early 20 th century in the city of Zamora, Spain. It has been concluded that avoiding moisture in brick walls not only prevents its deterioration but represents a significant energy saving, especially in buildings that have porous brick masonry walls and with significant thicknesses.

Suggested Citation

  • Alejandro Cabeza-Prieto & María Soledad Camino-Olea & María Ascensión Rodríguez-Esteban & Alfredo Llorente-Álvarez & María Paz Sáez Pérez, 2020. "Moisture Influence on the Thermal Operation of the Late 19th Century Brick Facade, in a Historic Building in the City of Zamora," Energies, MDPI, vol. 13(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1307-:d:331364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Doo Sung Choi & Myeong Jin Ko, 2019. "Analysis of Convergence Characteristics of Average Method Regulated by ISO 9869-1 for Evaluating In Situ Thermal Resistance and Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 12(10), pages 1-18, May.
    2. Marianna Rotilio & Federica Cucchiella & Pierluigi De Berardinis & Vincenzo Stornelli, 2018. "Thermal Transmittance Measurements of the Historical Masonries: Some Case Studies," Energies, MDPI, vol. 11(11), pages 1-18, November.
    3. Shui Yu & Yumeng Cui & Yifei Shao & Fuhong Han, 2019. "Simulation Research on the Effect of Coupled Heat and Moisture Transfer on the Energy Consumption and Indoor Environment of Public Buildings," Energies, MDPI, vol. 12(1), pages 1-17, January.
    4. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiemi Iba & Shuichi Hokoi, 2022. "Traditional Town Houses in Kyoto, Japan: Present and Future," Energies, MDPI, vol. 15(5), pages 1-19, March.
    2. Constantinos A. Balaras, 2022. "Building Energy Audits—Diagnosis and Retrofitting towards Decarbonization and Sustainable Cities," Energies, MDPI, vol. 15(6), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doo-Sung Choi & Ye-Ji Lee & Ji-Hoon Moon & Yong-Shik Kim & Myeong-Jin Ko, 2023. "Estimating In-Situ R-Value of Highly Insulated Building Walls Based on the Measurement of Temperature and Heat Flux Inside the Wall," Energies, MDPI, vol. 16(15), pages 1-16, July.
    2. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    4. Andrea Alongi & Luca Sala & Adriana Angelotti & Livio Mazzarella, 2023. "In Situ Measurement of Wall Thermal Properties: Parametric Investigation of the Heat Flow Meter Methods through Virtual Experiments Data," Energies, MDPI, vol. 16(10), pages 1-21, May.
    5. Lijun Gao & Yunze Li & Huijuan Xu & Xin Zhang & Man Yuan & Xianwen Ning, 2019. "Numerical Investigation on Heat-Transfer and Hydromechanical Performance inside Contaminant-Insensitive Sublimators under a Vacuum Environment for Spacecraft Applications," Energies, MDPI, vol. 12(23), pages 1-21, November.
    6. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    7. David Bienvenido-Huertas, 2020. "Assessing the Environmental Impact of Thermal Transmittance Tests Performed in Façades of Existing Buildings: The Case of Spain," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    8. Andrea Salandin & Alberto Quintana-Gallardo & Vicente Gómez-Lozano & Ignacio Guillén-Guillamón, 2022. "The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    9. Dashnor Hoxha & Brahim Ismail & Ancuța Rotaru & David Izabel & Thibaut Renaux, 2022. "Assessment of the Usability of Some Bio-Based Insulation Materials in Double-Skin Steel Envelopes," Sustainability, MDPI, vol. 14(17), pages 1-28, August.
    10. Doo Sung Choi & Myeong Jin Ko, 2019. "Analysis of Convergence Characteristics of Average Method Regulated by ISO 9869-1 for Evaluating In Situ Thermal Resistance and Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 12(10), pages 1-18, May.
    11. Marianna Rotilio & Federica Cucchiella & Pierluigi De Berardinis & Vincenzo Stornelli, 2018. "Thermal Transmittance Measurements of the Historical Masonries: Some Case Studies," Energies, MDPI, vol. 11(11), pages 1-18, November.
    12. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    13. Mariangela De Vita & Marianna Rotilio & Chiara Marchionni & Pierluigi De Berardinis, 2023. "Architectural Heritage Indoor Comfort after Retrofit Works: The Case Study of S. Vito Church in L’Aquila, Italy," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    14. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    15. Bienvenido-Huertas, David & Rubio-Bellido, Carlos & Solís-Guzmán, Jaime & Oliveira, Miguel José, 2020. "Experimental characterisation of the periodic thermal properties of walls using artificial intelligence," Energy, Elsevier, vol. 203(C).
    16. Cho, Hyun Mi & Yun, Beom Yeol & Kim, Young Uk & Yuk, Hyeonseong & Kim, Sumin, 2022. "Integrated retrofit solutions for improving the energy performance of historic buildings through energy technology suitability analyses: Retrofit plan of wooden truss and masonry composite structure i," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Florin-Emilian Țurcanu & Cătălin-George Popovici & Marina Verdeș & Vasilică Ciocan & Sebastian-Valeriu Hudișteanu, 2020. "Indoor Climate Modelling and Economic Analysis Regarding the Energetic Rehabilitation of a Church," Energies, MDPI, vol. 13(11), pages 1-15, June.
    18. Katarzyna Gładyszewska-Fiedoruk & Tomasz Janusz Teleszewski, 2020. "Modeling of Humidity in Passenger Cars Equipped with Mechanical Ventilation," Energies, MDPI, vol. 13(11), pages 1-14, June.
    19. David Bienvenido-Huertas & Roberto Rodríguez-Álvaro & Juan José Moyano & Fernando Rico & David Marín, 2018. "Determining the U -Value of Façades Using the Thermometric Method: Potentials and Limitations," Energies, MDPI, vol. 11(2), pages 1-17, February.
    20. David Bienvenido-Huertas & Juan Moyano & Carlos E. Rodríguez-Jiménez & Aurelio Muñoz-Rubio & Francisco Javier Bermúdez Rodríguez, 2020. "Quality Control of the Thermal Properties of Superstructures in Accommodation Spaces in Naval Constructions," Sustainability, MDPI, vol. 12(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1307-:d:331364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.