IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2971-d369402.html
   My bibliography  Save this article

Numerical Characterization of an Ultrasonic Mist Generator as an Evaporative Cooler

Author

Listed:
  • Javier Ruiz

    (Department of Mechanical Engineering and Energy, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain
    These authors contributed equally to this work.)

  • Pedro Martínez

    (Department of Mechanical Engineering and Energy, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain
    These authors contributed equally to this work.)

  • Íñigo Martín

    (Department of Mechanical Engineering and Energy, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain
    These authors contributed equally to this work.)

  • Manuel Lucas

    (Department of Mechanical Engineering and Energy, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202 Elche, Spain)

Abstract

Pre-cooling of inlet air using evaporative cooling is an effective approach to enhance the performance of air-cooled condensers in air conditioning applications. Ultrasonic mist generators have emerged as a promising alternative to conventional evaporative cooling systems based on cooling pads or spray cooling. This paper presents the developed numerical model of an ultrasonic mist generator for the evaporative pre-cooling of the inlet air of the condenser in air conditioning applications. The model was validated against the experimental data obtained in a wind tunnel experimental facility. A parametric analysis including some physical variables involved in the cooling process was carried out, including the main axial air velocity, the injection air velocity and the water mass flow rate of atomized water. The dimensionless groups water-to-air mass flow and air-to-air mass flow ratios were found to most affect the average evaporative cooling efficiency. A maximum value of 0.654 was found for the studied conditions. The optimization analysis carried out shows that the operational ranges leading to the best overall performance are 5 × 10 − 4 ≤ m ˙ w / m ˙ a T ≤ 0.002 and 0.035 ≤ m ˙ a i / m ˙ a T ≤ 0.05 . Under these conditions, there is a better distribution of the water mist throughout the control section and a more homogeneous and effective evaporative cooling process.

Suggested Citation

  • Javier Ruiz & Pedro Martínez & Íñigo Martín & Manuel Lucas, 2020. "Numerical Characterization of an Ultrasonic Mist Generator as an Evaporative Cooler," Energies, MDPI, vol. 13(11), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2971-:d:369402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Ye, 2016. "Research and applications of ultrasound in HVAC field: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 52-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    2. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    3. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2971-:d:369402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.