IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2872-d367493.html
   My bibliography  Save this article

Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas

Author

Listed:
  • Niccolò Frasi

    (DIEF—Department of Industrial Engineering, University of Florence, 50139 Florence, Italy)

  • Elena Rossi

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Isabella Pecorini

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

  • Renato Iannelli

    (DESTEC—Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56122 Pisa, Italy)

Abstract

This study investigates the influence of moisture content on the potential oxidation efficiency of methane (CH 4 ) of biofiltration systems treating landfill gas containing high oxygen concentrations. Column tests filled with compost with different moisture contents (20%, 30%, and 40%) loaded with different methane flows were set up on a laboratory scale. Analyzing the results the following evidences can be summarized: With low methane load (<100 g CH 4 m −2 d −1 ), a moisture content of 20% was not enough to support bacterial activity, while a moisture content of 40% advantaged the compost respiration assisting it to become the dominating process; with higher methane load (100–300 g CH 4 m −2 d −1 ), a moisture content of 30% resulted in an optimal value to support methanotrophic activity showing the highest CH 4 concentration reduction; moving on to a CH 4 load above 300 g CH 4 m −2 d −1 , the inhibition of methanotrophic activity emerged independently to the moisture content of the filter media. The optimal configuration is obtained for a moisture content of 30% and in the case of flows below 200 g CH 4 m −2 d −1 for which the oxidation efficiency results higher than 80%.

Suggested Citation

  • Niccolò Frasi & Elena Rossi & Isabella Pecorini & Renato Iannelli, 2020. "Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas," Energies, MDPI, vol. 13(11), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2872-:d:367493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isabella Pecorini & Elena Rossi & Renato Iannelli, 2020. "Mitigation of Methane, NMVOCs and Odor Emissions in Active and Passive Biofiltration Systems at Municipal Solid Waste Landfills," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    2. Baldi, F. & Pecorini, I. & Iannelli, R., 2019. "Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production," Renewable Energy, Elsevier, vol. 143(C), pages 1755-1765.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Józef Ciuła & Violetta Kozik & Agnieszka Generowicz & Krzysztof Gaska & Andrzej Bak & Marlena Paździor & Krzysztof Barbusiński, 2020. "Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis," Energies, MDPI, vol. 13(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Rossi & Isabella Pecorini & Giovanni Ferrara & Renato Iannelli, 2022. "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    3. Julia Burmistrova & Marc Beutel & Erin Hestir & Rebecca Ryals & Pramod Pandey, 2022. "Anaerobic Co-Digestion to Enhance Waste Management Sustainability at Yosemite National Park," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    4. Khanongnuch, Ramita & Abubackar, Haris Nalakath & Keskin, Tugba & Gungormusler, Mine & Duman, Gozde & Aggarwal, Ayushi & Behera, Shishir Kumar & Li, Lu & Bayar, Büşra & Rene, Eldon R., 2022. "Bioprocesses for resource recovery from waste gases: Current trends and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Kaur-Mikk Pehme & Kaja Orupõld & Valdo Kuusemets & Ottar Tamm & Yahya Jani & Toomas Tamm & Mait Kriipsalu, 2020. "Field Study on the Efficiency of a Methane Degradation Layer Composed of Fine Fraction Soil from Landfill Mining," Sustainability, MDPI, vol. 12(15), pages 1-16, August.
    6. Isabella Pecorini & Eleonora Peruzzi & Elena Albini & Serena Doni & Cristina Macci & Grazia Masciandaro & Renato Iannelli, 2020. "Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    7. Isabella Pecorini & Elena Rossi & Renato Iannelli, 2020. "Bromatological, Proximate and Ultimate Analysis of OFMSW for Different Seasons and Collection Systems," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    8. Elena Rossi & Isabella Pecorini & Renato Iannelli, 2022. "Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    9. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. D’ Silva, Tinku Casper & Isha, Adya & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, Paruchuri Mohan V. & Kumar, Ritunesh & Chaudhary, Ved Prakash & Singh, Harjit & Khan, Abid Ali & Tyagi, Vinay Kum, 2021. "Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Xinyuan Liu & Ruying Li & Min Ji, 2019. "Effects of Two-Stage Operation on Stability and Efficiency in Co-Digestion of Food Waste and Waste Activated Sludge," Energies, MDPI, vol. 12(14), pages 1-21, July.
    12. Elena Albini & Isabella Pecorini & Giovanni Ferrara, 2019. "Improvement of Digestate Stability Using Dark Fermentation and Anaerobic Digestion Processes," Energies, MDPI, vol. 12(18), pages 1-15, September.
    13. Isabella Pecorini & Elena Rossi & Renato Iannelli, 2020. "Mitigation of Methane, NMVOCs and Odor Emissions in Active and Passive Biofiltration Systems at Municipal Solid Waste Landfills," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    14. Palma-Heredia, D. & Verdaguer, M. & Molinos-Senante, M. & Poch, M. & Cugueró-Escofet, M.À., 2021. "Optimised blending for anaerobic co-digestion using ant colony approach: Besòs river basin case study," Renewable Energy, Elsevier, vol. 168(C), pages 141-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2872-:d:367493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.