IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2529-d359002.html
   My bibliography  Save this article

Review of Potential and Actual Penetration of Solar Power in Vietnam

Author

Listed:
  • Eleonora Riva Sanseverino

    (Engineering Department, University of Palermo, 90100 Palermo, Italy)

  • Hang Le Thi Thuy

    (Engineering Department, University of Palermo, 90100 Palermo, Italy
    Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam)

  • Manh-Hai Pham

    (Ministry of Industry and Trade, Electric Power University, Hanoi 100000, Vietnam)

  • Maria Luisa Di Silvestre

    (Engineering Department, University of Palermo, 90100 Palermo, Italy)

  • Ninh Nguyen Quang

    (Institute of Energy Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam)

  • Salvatore Favuzza

    (Engineering Department, University of Palermo, 90100 Palermo, Italy)

Abstract

With the average solar radiation reaching up to 5 kWh/m 2 , Vietnam is considered as a country showing an excellent potential for solar power production. Since the year 2000, there have been a lot of studies about the potential of this source in Vietnam. So far, many applications of solar power have been implemented on small, medium, and large scales. In fact, the total capacity of current grid-connected solar power plants has exceeded the planned capacity by 2020 nearly 6 times. However, the studies of solar potential in Vietnam are still incomplete. The policies and mechanisms for developing solar power projects have received attention from the authorities but have not been really satisfactory. The infrastructure is still poor and the power system does not keep up with the development of modern grids. This paper reviewed the potential and actual implementation stage of photovoltaic projects in Vietnam. Moreover, the barriers and challenges of institution, technique, economy, and finance have been considered explicitly for the future development of solar energy in Vietnam.

Suggested Citation

  • Eleonora Riva Sanseverino & Hang Le Thi Thuy & Manh-Hai Pham & Maria Luisa Di Silvestre & Ninh Nguyen Quang & Salvatore Favuzza, 2020. "Review of Potential and Actual Penetration of Solar Power in Vietnam," Energies, MDPI, vol. 13(10), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2529-:d:359002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han Phoumin & Shigeru Kimura, 2019. "Energy Outlook and Energy Saving Potential in East Asia 2019," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2019-energy-outlook-and-e edited by Han Phoumin & Shigeru Kimura, August.
    2. Aldo Orioli & Vincenzo Franzitta & Alessandra Di Gangi & Ferdinando Foresta, 2016. "The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts," Energies, MDPI, vol. 9(11), pages 1-31, November.
    3. Suntiti Yoomak & Theerasak Patcharoen & Atthapol Ngaopitakkul, 2019. "Performance and Economic Evaluation of Solar Rooftop Systems in Different Regions of Thailand," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    4. Orioli, Aldo & Di Gangi, Alessandra, 2016. "Five-years-long effects of the Italian policies for photovoltaics on the energy demand coverage of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 113(C), pages 444-460.
    5. Inmaculada Guaita-Pradas & Ana Blasco-Ruiz, 2020. "Analyzing Profitability and Discount Rates for Solar PV Plants. A Spanish Case," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    6. Huber, Matthias & Roger, Albert & Hamacher, Thomas, 2015. "Optimizing long-term investments for a sustainable development of the ASEAN power system," Energy, Elsevier, vol. 88(C), pages 180-193.
    7. Duc Luong, Nguyen, 2015. "A critical review on Energy Efficiency and Conservation policies and programs in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 623-634.
    8. Zahedi, A., 2010. "A review on feed-in tariff in Australia, what it is now and what it should be," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3252-3255, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Imaduddin Abdullah & Dallih Warviyan & Rika Safrina & Nuki Agya Utama & Andy Tirta & Ibham Veza & Irianto Irianto, 2023. "Green Fiscal Stimulus in Indonesia and Vietnam: A Reality Check of Two Emerging Economies," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    2. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Thi Tuyet Hong VU & Benoit DELINCHANT & Anh Tuan PHAN & Van Cong BUI & Dinh Quang NGUYEN, 2022. "A Practical Approach to Launch the Low-Cost Monitoring Platforms for Nearly Net-Zero Energy Buildings in Vietnam," Energies, MDPI, vol. 15(13), pages 1-19, July.
    4. Hang Thi-Thuy Le & Eleonora Riva Sanseverino & Dinh-Quang Nguyen & Maria Luisa Di Silvestre & Salvatore Favuzza & Manh-Hai Pham, 2022. "Critical Assessment of Feed-In Tariffs and Solar Photovoltaic Development in Vietnam," Energies, MDPI, vol. 15(2), pages 1-20, January.
    5. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    6. Chandel, Rahul & Chandel, Shyam Singh & Malik, Prashant, 2022. "Perspective of new distributed grid connected roof top solar photovoltaic power generation policy interventions in India," Energy Policy, Elsevier, vol. 168(C).
    7. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Eleonora Riva Sanseverino & Maurizio Cellura & Le Quyen Luu & Maria Anna Cusenza & Ninh Nguyen Quang & Nam Hoai Nguyen, 2021. "Life-Cycle Land-Use Requirement for PV in Vietnam," Energies, MDPI, vol. 14(4), pages 1-11, February.
    9. Tung Nguyen Thanh & Phap Vu Minh & Kien Duong Trung & Tuan Do Anh, 2021. "Study on Performance of Rooftop Solar Power Generation Combined with Battery Storage at Office Building in Northeast Region, Vietnam," Sustainability, MDPI, vol. 13(19), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    2. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    3. Idiano D’Adamo, 2018. "The Profitability of Residential Photovoltaic Systems. A New Scheme of Subsidies Based on the Price of CO 2 in a Developed PV Market," Social Sciences, MDPI, vol. 7(9), pages 1-21, August.
    4. Orioli, Aldo & Di Gangi, Alessandra, 2017. "Six-years-long effects of the Italian policies for photovoltaics on the grid parity of grid-connected photovoltaic systems installed in urban contexts," Energy, Elsevier, vol. 130(C), pages 55-75.
    5. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    6. Califano, M. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2022. "Optimal heat and power management of a reversible solid oxide cell based microgrid for effective technoeconomic hydrogen consumption and storage," Applied Energy, Elsevier, vol. 319(C).
    7. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "Analysis of Power Loss and Improved Simulation Method of a High Frequency Dual-Buck Full-Bridge Inverter," Energies, MDPI, vol. 10(3), pages 1-18, March.
    8. Dahlke, Steven & Sterling, John & Meehan, Colin, 2019. "Policy and market drivers for advancing clean energy," OSF Preprints hsbry, Center for Open Science.
    9. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    10. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "Economic Analysis of a Photovoltaic System: A Resource for Residential Households," Energies, MDPI, vol. 10(6), pages 1-15, June.
    11. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    12. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    13. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    14. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    15. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    16. Jinpeng Liu & Li Wang & Mohan Qiu & Jiang Zhu, 2016. "Promotion Potentiality and Optimal Strategies Analysis of Provincial Energy Efficiency in China," Sustainability, MDPI, vol. 8(8), pages 1-17, August.
    17. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    18. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    19. Antonelli, Marco & Desideri, Umberto, 2014. "The doping effect of Italian feed-in tariffs on the PV market," Energy Policy, Elsevier, vol. 67(C), pages 583-594.
    20. Lan, Haifeng & Gou, Zhonghua & Lu, Yi, 2021. "Machine learning approach to understand regional disparity of residential solar adoption in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2529-:d:359002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.