IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2470-d358088.html
   My bibliography  Save this article

Research on Environmental Sustainability of Coal Cities: A Case Study of Yulin, China

Author

Listed:
  • Xiaowei Zhai

    (School of Safety and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Zhuo Cheng

    (School of Safety and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Keyu Ai

    (School of Management, The University of Sheffield, Sheffield S1 3JD, UK)

  • Bo Shang

    (School of Safety and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

Coal cities are an essential impetus for economic development and urbanization processes in China. However, a series of environmental issues provoked by resource exploitation cause the environmental sustainability of coal cities to face enormous challenges. Therefore, on the basis of the time series data of Yulin City from 1996 to 2017, this paper explores the nexus between socioeconomic development and industrial “three wastes” emissions by adopting the Tapio decoupling model, the environmental Kuznets curve (EKC) hypothesis, and the vector auto-regressive (VAR) model. The results show that Yulin’s economic development remains in an extensive stage and will not decouple from the environmental pollution in a short time. Except for the nexus of industrial solid waste and economic growth, which is an inverted U-shaped, the EKC hypothesis is not valid for industrial wastewater and industrial waste gas. Through the VAR (2) model, the impact of per capita gross domestic product (GDP) on industrial waste emissions is consistent with the results of the EKC hypothesis. Moreover, industrial waste emissions have a positive correlation with the per capita raw coal output, the energy consumption per unit of GDP, and the proportion of secondary industry. Hence, it is necessary to formulate targeted measures from industrial restructuring, industrial chain extension, governance model optimization, and waste comprehensive utilization to realize the environmental sustainability of coal cities.

Suggested Citation

  • Xiaowei Zhai & Zhuo Cheng & Keyu Ai & Bo Shang, 2020. "Research on Environmental Sustainability of Coal Cities: A Case Study of Yulin, China," Energies, MDPI, vol. 13(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2470-:d:358088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Solarin, Sakiru Adebola & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2019. "Sustainable economic development in China: Modelling the role of hydroelectricity consumption in a multivariate framework," Energy, Elsevier, vol. 168(C), pages 516-531.
    2. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    3. Baek, Jungho, 2015. "Environmental Kuznets curve for CO2 emissions: The case of Arctic countries," Energy Economics, Elsevier, vol. 50(C), pages 13-17.
    4. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    5. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Characterizing the Influences of Economic Development, Energy Consumption, Urbanization, Industrialization, and Vehicles Amount on PM 2.5 Concentrations of China," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    6. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    7. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    8. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    9. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    10. Holtz-Eakin, Douglas & Selden, Thomas M., 1995. "Stoking the fires? CO2 emissions and economic growth," Journal of Public Economics, Elsevier, vol. 57(1), pages 85-101, May.
    11. Alter, Adrian & Schüler, Yves S., 2012. "Credit spread interdependencies of European states and banks during the financial crisis," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3444-3468.
    12. Frauke Urban & Johan Nordensvärd, 2018. "Low Carbon Energy Transitions in the Nordic Countries: Evidence from the Environmental Kuznets Curve," Energies, MDPI, vol. 11(9), pages 1-17, August.
    13. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    14. Bimonte, Salvatore & Stabile, Arsenio, 2017. "Land consumption and income in Italy: a case of inverted EKC," Ecological Economics, Elsevier, vol. 131(C), pages 36-43.
    15. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    16. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    17. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    18. Tapio, Petri, 2005. "Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001," Transport Policy, Elsevier, vol. 12(2), pages 137-151, March.
    19. Zeng, Lijun & Guo, Jiaqi & Wang, Bingcheng & Lv, Jun & Wang, Qin, 2019. "Analyzing sustainability of Chinese coal cities using a decision tree modeling approach," Resources Policy, Elsevier, vol. 64(C).
    20. List, John A. & Gallet, Craig A., 1999. "The environmental Kuznets curve: does one size fit all?," Ecological Economics, Elsevier, vol. 31(3), pages 409-423, December.
    21. Theodoros Bratis & Nikiforos T. Laopodis & Georgios P. Kouretas, 2018. "Contagion and interdependence in Eurozone bank and sovereign credit markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 23(4), pages 655-674, October.
    22. Wu, Yiyun & Zhu, Xiwei & Groenewold, Nicolaas, 2019. "The determinants and effectiveness of industrial policy in china: A study based on Five-Year Plans," China Economic Review, Elsevier, vol. 53(C), pages 225-242.
    23. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    24. Liu, Xiaozi & Heilig, Gerhard K. & Chen, Junmiao & Heino, Mikko, 2007. "Interactions between economic growth and environmental quality in Shenzhen, China's first special economic zone," Ecological Economics, Elsevier, vol. 62(3-4), pages 559-570, May.
    25. Hou, Yanliang & Long, Ruyin & Chen, Hong & Zhang, Linling, 2018. "Research on the sustainable development of China’s coal cities based on lock-in effect," Resources Policy, Elsevier, vol. 59(C), pages 479-486.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Lijun & Wang, Jinfeng & Zhang, Jinsuo & Sun, Zhimei & Santibanez Gonzalez, Ernesto D.R., 2021. "A path matching model on new urbanization in mineral resource abundant regions," Resources Policy, Elsevier, vol. 73(C).
    2. Lei Zhu & Wenzhe Gu & Fengqi Qiu & Peng Zhang, 2023. "Analysis of Influencing Factors of Gangue Ball Milling Based on Multifractal Theory," Sustainability, MDPI, vol. 15(8), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roxana Pincheira & Felipe Zuniga, 2021. "Environmental Kuznets curve bibliographic map: a systematic literature review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1931-1956, April.
    2. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    3. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    4. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    5. Bölük, Gülden & Mert, Mehmet, 2015. "The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 587-595.
    6. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    7. Pascalau, Razvan & Qirjo, Dhimitri, 2017. "TTIP and the Environmental Kuznets Curve," MPRA Paper 80192, University Library of Munich, Germany.
    8. Bennedsen, Mikkel & Hillebrand, Eric & Jensen, Sebastian, 2023. "A neural network approach to the environmental Kuznets curve," Energy Economics, Elsevier, vol. 126(C).
    9. Mikkel Bennedsen & Eric Hillebrand & Sebastian Jensen, 2022. "A Neural Network Approach to the Environmental Kuznets Curve," CREATES Research Papers 2022-09, Department of Economics and Business Economics, Aarhus University.
    10. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    11. Carson, Richard T, 2009. "Searching for Empirical Regularity and Theoretical Structure: The Environmental Kuznets Curve," University of California at San Diego, Economics Working Paper Series qt4m6263c2, Department of Economics, UC San Diego.
    12. Javier Arnaut & Johanna Lidman, 2021. "Environmental Sustainability and Economic Growth in Greenland: Testing the Environmental Kuznets Curve," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    13. Jiang Qingquan & Shoukat Iqbal Khattak & Manzoor Ahmad & Lin Ping, 2020. "A new approach to environmental sustainability: Assessing the impact of monetary policy on CO2 emissions in Asian economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1331-1346, September.
    14. Simone Marsiglio & Alberto Ansuategi & Maria Carmen Gallastegui, 2016. "The Environmental Kuznets Curve and the Structural Change Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(2), pages 265-288, February.
    15. Cátia Sousa & Catarina Roseta‐Palma & Luís Filipe Martins, 2015. "Economic growth and transport: On the road to sustainability," Natural Resources Forum, Blackwell Publishing, vol. 39(1), pages 3-14, February.
    16. Roxana Pincheira & Felipe Zuniga & Pablo Neudorfer, 2021. "Carbon Kuznets curve: a dynamic empirical approach for a panel data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(4), pages 5523-5541, December.
    17. Stern, David I. & Gerlagh, Reyer & Burke, Paul J., 2017. "Modeling the emissions–income relationship using long-run growth rates," Environment and Development Economics, Cambridge University Press, vol. 22(6), pages 699-724, December.
    18. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    19. Wang, Sophie Xuefei & Fu, Yu Benjamin & Zhang, Zhe George, 2015. "Population growth and the environmental Kuznets curve," China Economic Review, Elsevier, vol. 36(C), pages 146-165.
    20. Luzzati, T. & Orsini, M., 2009. "Investigating the energy-environmental Kuznets curve," Energy, Elsevier, vol. 34(3), pages 291-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2470-:d:358088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.