IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p99-d301407.html
   My bibliography  Save this article

Towards the Correct Measurement of Thermal Conductivity of Ionic Melts and Nanofluids

Author

Listed:
  • Carlos A. Nieto de Castro

    (Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal)

  • Maria José V. Lourenço

    (Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal)

Abstract

Thermophysical properties of engineering fluids have proven in the past to be essential for the design of physical and chemical processing and reaction equipment in the chemical, metallurgical, and allied industries, as they influence directly the design parameters and performance of plant units in the of, for example, heat exchangers, distillation columns, phase separation, and reactors. In the energy field, the search for the optimization of existing and alternative fuels, either using neutral or ionic fluids, is an actual research and application topic, both for new applications and the sustainable development of old technologies. One of the most important drawbacks in the industrial use of thermophysical property data is the common discrepancies in available data, measured with different methods, different samples, and questionable quality assessment. Measuring accurately the thermal conductivity of fluids has been a very successful task since the late 1970s due to the efforts of several schools in Europe, Japan, and the United States. However, the application of the most accurate techniques to several systems with technological importance, like ionic liquids, nanofluids, and molten salts, has not been made in the last ten years in a correct fashion, generating highly inaccurate data, which do not reflect the real physical situation. It is the purpose of this paper to review critically the best available techniques for the measurement of thermal conductivity of fluids, with special emphasis on transient methods and their application to ionic liquids, nanofluids, and molten salts.

Suggested Citation

  • Carlos A. Nieto de Castro & Maria José V. Lourenço, 2019. "Towards the Correct Measurement of Thermal Conductivity of Ionic Melts and Nanofluids," Energies, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:99-:d:301407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/99/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/99/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nunes, V.M.B. & Lourenço, M.J.V. & Santos, F.J.V. & Nieto de Castro, C.A., 2019. "Molten alkali carbonates as alternative engineering fluids for high temperature applications," Applied Energy, Elsevier, vol. 242(C), pages 1626-1633.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
    2. Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
    3. Kondaiah, P. & Pitchumani, R., 2022. "Novel textured surfaces for superior corrosion mitigation in molten carbonate salts for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:99-:d:301407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.